
Computational Statistics and Data Analysis (MVComp2)
Exercise 4

Lecturer Tristan Bereau Semester Wi23/24
Due Nov. 16, 2023, 23:59

1 Exponential distribution (2 points)

The exponential distribution is defined on the interval [0, +∞) as

𝑝(𝑥) ∝ exp(−𝑥).

(a) Determine the moment-generating function 𝑚(𝑡) for the exponential distribution, 𝑝(𝑥).

(b) Verify that ⟨𝑥𝑛⟩ = 𝑛!.

2 Poisson distribution (2 points)

The Poisson distribution 𝑝𝜆(𝑛) is given by

𝑝𝜆(𝑛) = 𝜆𝑛

𝑛!
exp(−𝜆)

(a) Find the first three moments about the origin, ⟨𝑛⟩, ⟨𝑛2⟩, and ⟨𝑛3⟩.1

(b) The Poisson distribution has the peculiar property that mean and variance are equal, implying

⟨𝑛2⟩
⟨𝑛⟩2 − 1 = 1

⟨𝑛⟩
.

Show that this is valid.

1A genuine attempt at solving the original assignment will also get you full points. For part (b) make sure to use the correct
moments (the moments about the mean were discussed in class).
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3 Generalized Fokker–Planck equation (4 points)

We propose to describe a continuous stochastic process of a probability density, where we will make use of a
central-moment expansion and assume a Markovian (i.e., memoryless) description.

(a) Formal-moment expansion: Consider the (stationary2) probability distribution, 𝑝(𝑥), given its set of
moments about the origin, 𝜇′

𝑛. Show that you can express the distribution in terms of its moments:

𝑝(𝑥) =
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝜇′

𝑛
𝑛!

𝛿(𝑥).

Hint: The derivatives of the Dirac delta function follow the relation:

1
2𝜋

∫
∞

−∞
d𝑘 (𝑖𝑘)𝑛e−𝑖𝑘𝑥 = (− 𝜕

𝜕𝑥
)

𝑛
𝛿(𝑥)

(b) Kramers–Moyal expansion: We convert 𝑝 into a transition probability function, 𝑝(𝑥, 𝑡|𝑥0, 𝑡0), where 𝑥
and 𝑡 denote the spatial coordinate and time, respectively. The moments about the origin become moments
about the mean, i.e., we work with 𝜇𝑛 instead of 𝜇′

𝑛. Because of the expansion in (a), the time variable
may only affect the moments, not the Dirac delta, i.e.,

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) =
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝛿(𝑥 − 𝑥0)

𝑛!
𝜇𝑛(𝑡|𝑥0, 𝑡0).

Invoke Markovianity of 𝑝 by making use of the Chapman–Kolmogorov equation

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) = ∫ d𝑥1 𝑝(𝑥, 𝑡|𝑥1, 𝑡1)𝑝(𝑥1, 𝑡1|𝑥0, 𝑡0).

This effectively factorizes the transition probability in time. Work with an intermediate step such that
𝑡1 = 𝑡 − 𝜏, where 𝜏 is small. Show that the transition probability follows the differential equation

𝜕
𝜕𝑡

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) =
∞

∑
𝑛=1

(− 𝜕
𝜕𝑥

)
𝑛

𝐷(𝑛)(𝑥, 𝑡)𝑝(𝑥, 𝑡|𝑥0, 𝑡0),

where the coefficients
𝐷(𝑛)(𝑥, 𝑡) ∶= lim

𝜏→0

𝜇𝑛(𝑡|𝑥, 𝑡 − 𝜏)
𝑛!𝜏

are called the Kramers–Moyal coefficients.

(c) Fokker–Planck equation: Assume that the transition probability 𝑝(𝑥, 𝑡|𝑥0, 𝑡 − 𝜏) has only two non-zero
moments about the mean: 𝜇1(𝑡|𝑥, 𝑡 − 𝜏) = 𝛾𝜏 and 𝜇2(𝑡|𝑥, 𝑡 − 𝜏) = 𝜎2𝜏, where 𝛾 and 𝜎 are real numbers.
What does the differential equation simplify to? (This is called the Fokker–Planck equation—it contains
two terms: drift and diffusion.)

4 Random walks (2 points)

Write a script to sample the end-points of two families of random walks:

1. Brownian motion, where steps are drawn according to a standard Gaussian

2i.e., does not change with time.
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2. A Lévy walk, where steps are drawn according to the Cauchy distribution

𝑝(𝑥)d𝑥 = 1
𝜋

1
1 + 𝑥2 d𝑥.

For both types of random walks, plot the variance of the end points as a function of the number of steps, 𝑛,
of the walk. Include the theoretical variance for Brownian motion. Use a log-log representation for the plot.
Average over 100 random walks each point, and consider the numbers of steps 𝑛 = [10, 20, … , 1000].
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