Computational Statistics and Data Analysis (MVComp2)

 Exercise 6

 Exercise 6}

Lecturer Tristan Bereau

Semester Wi23/24
Due Nov. 30, 2023, 23:59

1 NYC taxicabs: frequentist inference (5 points)

While visiting New York city, you realize that each yellow taxicab displays a serial number. You assume that each cab i displays a unique number, x_{i}, and that they are sequentially numbered starting from 1 . Can you infer the total number of taxicabs, N, given a set of k observations, $x_{1}, x_{2}, \ldots, x_{k}$?
(a) Show that the conditional probability that the largest serial number observed is $M=m$, given that there are $N=n$ taxicabs and you make $K=k$ observations is given by

$$
P(M=m \mid N=n, K=k)=\left\{\begin{array}{rr}
\binom{m-1}{k-1}\binom{n}{k}^{-1}, & \text { if } k \leq m \text { and } m \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

(b) The expression in (a) is, in fact, the likelihood. Use maximum likelihood estimation to derive an estimator for N as a function of M, denoted $\hat{N}_{1}(M)$. Is it a biased estimator?
(c) You propose to build a more robust estimator: Estimate the number of unobserved labels that are above the largest number observed, M. Assume that this number is equal to the average gap between observations. Show that your estimator for the total population size leads to

$$
\hat{N}_{2}(M)=\frac{k+1}{k} M-1
$$

(d) Use the likelihood in (a) to show that \hat{N}_{2} is an unbiased estimator.
(e) The variance of the estimator is given by the expression

$$
\operatorname{Var}\left[\hat{N}_{2}\right]=\frac{1}{k} \frac{(n-k)(n+1)}{k+2} .
$$

In the regime of few observations, show that $\operatorname{Var}\left[\hat{N}_{2}\right]$ behaves in agreement to your assumptions.

2 NYC taxicabs: Bayesian inference (5 points)

Let's solve the same problem as in question 1, but using Bayesian inference. We want to use the likelihood in question 1 (a), together with an improper uniform prior over N, while fixing $K=k .{ }^{1}$
(a) Show that the posterior distribution, $P(N=n \mid M=m, K=k)$, is given by

$$
P(N=n \mid M=m, K=k)=\frac{k-1}{m}\binom{m}{k}\binom{n}{k}^{-1} .
$$

Hint: you may find the following Binomial coefficient identity useful

$$
\sum_{a=j}^{\infty}\binom{a}{b}^{-1}=\frac{b}{b-1} \frac{1}{\binom{j-1}{b-1}}
$$

(b) What is the maximum a-posteriori estimator?
(c) The posterior, $P(n \mid m, k)$, in fact corresponds to a shifted factorial distribution, such that $N-m \sim$ Fact (k, m). A random variable, Z, follows a factorial distribution with parameters n and m, i.e., $Z \sim$ Fact (n, m), such that

$$
P(Z=z)=(n-1) \frac{(m-1)!}{(m-n)!} \frac{(m+z-n)!}{(m+z)!} .
$$

One can show that the expected value of Z is given by $E[Z]=\frac{m-n+1}{n-2}$. Show that the posterior mean is given by

$$
\bar{N}=E[P(n \mid m, k)]=\frac{k-1}{k-2}(m-1) .
$$

(d) Consider the following sequence of serial numbers: $\boldsymbol{x}=(41,60,17,42)$. Compare the frequentist estimator, \hat{N}_{2} in question 1 (c) with the present posterior mean, \bar{N}. Comment on the difference. What might be a more appropriate quantity for the posterior to better match the frequentist inference?

[^0]
[^0]: ${ }^{1}$ An improper uniform prior is not bounded, and as such does not strictly speaking integrate to 1 over its domain. A more rigorous approach would consist of taking a large, but finite, interval. You can then show that the final result does not depend on the value of the bound. We will not do that here.

