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Due Dec. 14, 2023, 23:59

1 Partial derivative of the residual sum of squares (2 points)

Recall the residual sum of squares, RSS = ‖𝑦𝑦𝑦 − 𝑋𝑤𝑋𝑤𝑋𝑤‖2
2.

Show that
𝜕

𝜕𝑤𝑘
RSS(𝑤𝑤𝑤) = 𝑎𝑘𝑤𝑘 − 𝑐𝑘

𝑎𝑘 = 2‖𝑥∶,𝑘‖2

𝑐𝑘 = 2
𝑛

∑
𝑖=1

𝑥𝑖𝑘(𝑦𝑖 − 𝑤𝑤𝑤⊺
−𝑘𝑥𝑥𝑥𝑖,−𝑘) = 2𝑥𝑥𝑥⊺

∶,𝑘𝑟𝑟𝑟𝑘,

where 𝑤𝑤𝑤−𝑘 corresponds to 𝑤𝑤𝑤 without component 𝑘, 𝑥𝑥𝑥𝑖,−𝑘 is 𝑥𝑥𝑥𝑖 without component 𝑘, and 𝑟𝑟𝑟𝑘 = 𝑦𝑦𝑦 − 𝑤𝑤𝑤⊺
−𝑘𝑥𝑥𝑥∶,−𝑘 is

the residual due to using all the features except feature 𝑘.

Hint: Partition the weights into those involving 𝑘 and those not involving 𝑘.

2 Lasso regression (2 points)

Recall the result of problem 1, where the RSS provides the smooth part of the lasso objective

ℒ(𝑤𝑤𝑤) = RSS(𝑤𝑤𝑤) + 𝜆‖𝑤𝑤𝑤‖1.

(a) Find the optimal parameters, �̂�𝑘 as a function of 𝑐𝑘. You should find a relation as illustrated in the Figure.

(b) Instead of using the optimal parameters derived in (a), it helps to approximate it with a so-called
soft-threshold function

SoftThreshold(𝑥, 𝛿) = sign(𝑥) max(|𝑥| − 𝛿, 0).

Sketch �̂�𝑑 = SoftThreshold( 𝑐𝑑
𝑎𝑑

, 𝜆
𝑎𝑑

) and compare it with both the optimal parameters derived in (a), as well
as the vanilla RSS from problem 1. Interpret how the two Lasso methods affect the optimal parameters.
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Hint: We can generalize the notion of a derivative for certain functions with local discontinuities. Such functions
are called subdifferentiable. A famous example is the absolute value function, 𝑓(𝑥) = |𝑥|. Its subdifferential is
given by

𝜕𝑓(𝑥) =
⎧{
⎨{⎩

−1, if 𝑥 < 0
[−1, 1], if 𝑥 = 0

+1, if 𝑥 > 0

where the notation [−1, 1] means any value between -1 and 1 inclusive.

3 Prostate cancer (6 points)

We will analyze a prostate cancer dataset, which you can download here: prostate.csv. It contains 97 datapoints,
each with the following features:

Variable Description

lcavol (log) Cancer volume
lweight (log) Weight
age Patient age
lbph (log) Vening Prostatic Hyperplasia
svi Seminal Vesicle Invasion
lcp (log) Capsular Penetration
gleason Gleason score
pgg45 Percent of Gleason score 4 or 5
lpsa (log) Prostate Specific Antigen

The objective is to build a predictive model for lpsa. We will denote the vector of labels of lpsa, 𝑦𝑦𝑦. The rest of
the dataset will consist of the feature matrix, 𝑋𝑋𝑋, made of the abovementioned variables, as well as an extra
column [1, … , 1]⊺ to account for the intercept of your linear models.

(a) Plot the correlation between lpsa and each one of the three features that correlate the strongest with
lpsa.

(b) Check that your dataset matrix, 𝑋𝑋𝑋, is full rank.

(c) Split your data into a training and a test set. Keep 30 datapoints for the test set. (Feel free to use existing
libraries, like scikit-learn.)
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(d) Implement yourself an ordinary least squares solver. Do not use existing statistics / machine learning
libraries (though feel free to use linear-algebra libraries). To simplify your task, consider filling in the
following template:

import numpy as np
from dataclasses import dataclass, field

@dataclass
class OrdinaryLeastSquares:

model_params: np.ndarray = field(init=False)

def __post_init__(self):
self.model_params = None

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
# self.model_params = ... (fit your model)
pass

def predict(self, X_test_: np.ndarray) -> np.ndarray:
# make predictions for X_test_
pass

def rmse(self, X_test_: np.ndarray, y_test_: np.ndarray) -> float:
# compute the root-mean-squared-error
pass

Print out the set of optimal parameters for your training set, as well as the RMSE of the test set.

(e) Implement yourself ridge regression. Consider extending the following template:

@dataclass
class RidgeRegression(OrdinaryLeastSquares):

ridge_penalty: float

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
# self.model_params = ... (fit your model)
pass

where ridge_penalty is the coefficient in front of the ℓ2 regularization term. Exclude the intercept from the
regularization procedure. Plot the values of all model parameters (except the intercept) as a function of the
regularization penalty term. Have the penalty term vary from 0 to 100. On a separate figure, plot the RMSE of
the test set as a function of the penalty term. Indicate at what penalty value your best model is.

(f) Implement yourself lasso regression. Use the objective function and soft threshold function from Problem 2
(b) to iteratively update your model parameters until convergence (controlled by num_iter in the template
code below)

@dataclass
class LassoRegression(OrdinaryLeastSquares):

lasso_penalty: float
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def fit(self, X_train_: np.ndarray, y_train_: np.ndarray, num_iter: int = 1000) -> None:
# self.model_params = ... (fit your model)
pass

where lasso_penalty is the coefficient in front of the ℓ1 regularization term. Exclude the intercep from the
regularization procedure. Plot the values of all model parameters (except the intercept) as a function of the
regularization penalty term. Have the penalty term vary from 10−1 to 102. On a separate figure, plot the RMSE
of the test set as a function of the penalty term. Indicate at what penalty value your best model is.

(g) Compare your sets of best parameters across the three solvers, and comment on the impact of ridge and
lasso regression.
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