
Computational Statistics and Data Analysis (MVComp2)
Exercise 10

Lecturer Tristan Bereau Semester Wi23/24
Due Jan. 18, 2024, 23:59

1 Log-likelihood for multinomial logistic regression (3 points)

Recall binary logistic regression. We consider multinomial logistic regression—an extension to 𝐶 classes. We
write the classifier as a categorical distribution, Cat, a discrete probability distribution. For a datapoint 𝑥𝑥𝑥𝑛 ∈ ℝ𝐷,
we have the discriminative classification model

𝑝(𝑦𝑛|𝑥𝑥𝑥𝑛, 𝜃𝜃𝜃) = Cat(𝑦𝑛|softmax(W⊺𝑥𝑥𝑥𝑛)) =
𝐶

∏
𝑐=1

softmax(𝑤𝑤𝑤⊺
𝑐 𝑥𝑥𝑥𝑛)𝟙(𝑦𝑛=𝑐),

where W is a 𝐶 × 𝐷 weight matrix for 𝐶 classes and 𝐷 features, 𝟙(⋅) is the indicator function,1 and the softmax
function is defined below. We can rewrite the class label as a one-hot encoding: 𝑦𝑛𝑐 = 𝟙(𝑦𝑛 = 𝑐). This yields

𝑝(𝑦𝑛𝑐 = 1|𝑥𝑥𝑥𝑛, 𝜃𝜃𝜃) = 𝜇𝑛𝑐 = softmax(𝜂𝜂𝜂𝑛𝑐) = e𝜂𝑛𝑐

∑𝐶
𝑐′=1 e𝜂𝑛𝑐′

,

where 𝜂𝜂𝜂𝑛𝑐 = 𝑤𝑤𝑤⊺
𝑐 𝑥𝑥𝑥𝑛 is the vector of logits for the 𝑛-th datapoint and class 𝑐.

(a) Show that the Jacobian of the softmax is

𝜕𝜇𝑖𝑘
𝜕𝜂𝑖𝑗

= 𝜇𝑖𝑘(𝛿𝑘𝑗 − 𝜇𝑖𝑗),

where 𝛿𝑘𝑗 is the Kronecker delta.

(b) Show that the gradient of the negative log-likelihood is given by

∇𝑤𝑤𝑤𝑐
ℓ = ∑

𝑖
(𝜇𝑖𝑐 − 𝑦𝑖𝑐)𝑥𝑥𝑥𝑖.

(c) Show that the Hessian block between classes 𝑐 and 𝑐′ is given by

H𝑐,𝑐′ = 𝜇𝑛𝑐(𝛿𝑐′𝑐 − 𝜇𝑛𝑐′)𝑥𝑥𝑥𝑛𝑥𝑥𝑥⊺
𝑛 .

1𝟙(⋅) is 1 if its argument is satisfied and 0 otherwise.

1

2 Classification of penguins (4 points)

Download the following dataset about penguins: penguins.csv. We will focus on the following features:

Variable Description

species Penguin species
bill_length_mm bill (or beak) length in mm
bill_depth_mm bill depth in mm
flipper_length_mm flipper (or wing) length in mm

The objective of the exercise is to construct a classifier for the response variable species from the other features.
The dataset contains three penguin species: Adelie, Chinstrap, and Gentoo.

(a) For each species, plot the one-dimensional cumulative distribution functions of the different features. Argue
whether one-dimensional classifiers are likely to perform well to seperate each species.

(b) Let’s classify penguins. To this end, assign a (uninformative) uniform prior distribution for each species.
Model the likelihood using univariate Gaussian distributions. Write a function that can compute the
posterior probability of each species given a feature and its value. Make sure to normalize your probabilities.
Test your model for a flipper length of 213 mm, as well as 197 mm. Comment on the results.

(c) Use the one-dimensional posterior distributions from (b) applied to the dataset to evaluate their performance
as classifier. Classify according to the highest probability encountered. Evaluate the resulting proportion
of correctly predicted labels for each feature across your dataset.

(d) Use the prior and likelihood distributions of part (b) to build a Naïve Bayes classifier across the three
features. Evaluate the performance of the classification by measuring the proportion of correctly predicted
labels. Compare to (c) and comment.

Hint: You may find the following functions useful:

• empiricaldist.Cdf
• empiricaldist.Pmf
• scipy.stats.norm

3 Prostate cancer, kernelized (3 points)

Let’s revisit the prostate-cancer dataset from Homework Set 8, which you can download here: prostate.csv. This
time we will use kernel ridge regression to build a supervised learning model for lpsa.

(a) Implement yourself a kernel ridge regression. Do not use existing statistics / machine learning libraries
(though feel free to use linear-algebra libraries). To simplify your task, consider extending the following
template that inherits from OrdinaryLeastSquares from Homework Set 8 (and provided below):

import numpy as np
from dataclasses import dataclass, field

@dataclass
class OrdinaryLeastSquares:

model_params: np.ndarray = field(init=False)

2

data_10_penguins.csv
data_08_prostate.csv

training_set: np.array = field(init=False)

def __post_init__(self):
self.model_params = None

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
self.training_set = X_train_
self.model_params = (

np.linalg.inv(X_train_.T @ X_train_) @ X_train_.T @ y_train_
)

def predict(self, X_test_: np.ndarray) -> np.ndarray:
return X_test_ @ self.model_params

def rmse(self, X_test_: np.ndarray, y_test_: np.ndarray) -> float:
y_pred = self.predict(X_test_)
return np.sqrt(mean_squared_error(y_test_, y_pred))

@dataclass
class GaussianKernel(OrdinaryLeastSquares):

sigma: float
regularization: float

def kernel_matrix(self, x_1: np.array, x_2: np.array) -> np.array:
pass

def fit(self, x: np.array, y: np.array) -> None:
pass

def predict(self, x: np.array) -> np.array:
pass

where sigma is the length scale of a Gaussian (i.e., “radial basis function”) kernel and regularization is the
coefficient in front of the ℓ2 parameter. The function kernel_matrix computes the kernel matrix between any
two datasets 𝑋𝑋𝑋1 and 𝑋𝑋𝑋2. Use the same train/test split as in Homework set 8. Generate a contour plot of the
test root-mean-squared error (RMSE) as a function of 𝜎 and 𝜆 with suggested ranges 10−1 ≤ 𝜎 ≤ 104 and
10−6 ≤ 𝜆 ≤ 104. Interpret the results: What happens at low and high 𝜎 and 𝜆, and why?

Hint: You may find the following functions useful:

• numpy.logspace
• numpy.meshgrid
• matplotlib.pyplot.contourf

(b) Use part (a) to identify optimal hyperparameters for 𝜎 and 𝜆. Generate a parity plot of predicted against
reference labels for the test dataset. Compare the value of the RMSE to your results from ordinary least
squares and linear ridge regression in Homework Set 8.

3

	Log-likelihood for multinomial logistic regression (3 points)
	Classification of penguins (4 points)
	Prostate cancer, kernelized (3 points)

