
Computational Statistics and Data Analysis (MVComp2)
Solutions to exercise 4

Lecturer Tristan Bereau Semester Wi23/24
Due Nov. 16, 2023, 23:59

1 Exponential distribution (2 points)

The exponential distribution is defined on the interval [0, +∞) as

𝑝(𝑥) ∝ exp(−𝑥).

(a) Determine the moment-generating function 𝑚(𝑡) for the exponential distribution, 𝑝(𝑥).

(b) Verify that ⟨𝑥𝑛⟩ = 𝑛!.

1.1 Solution

(a) Start from the definition

𝑚(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫
∞

0
d𝑥𝑒(𝑡−1)𝑥 = [𝑒(𝑡−1)𝑥

𝑡 − 1
]

∞

0
= 1

1 − 𝑡

(b) Compute the moments about the origin:

⟨𝑥𝑛⟩ = ∫
∞

0
d𝑥𝑥𝑛𝑝(𝑥) = ∫

∞

0
d𝑥𝑥𝑛e−𝑥

Recall the definition of the Gamma function

Γ(𝑛) = ∫
∞

0
d𝑥𝑥𝑛−1e−𝑥 = (𝑛 − 1)!,

such that ⟨𝑥𝑛⟩ = Γ(𝑛 + 1) = 𝑛!.
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2 Poisson distribution (2 points)

The Poisson distribution 𝑝𝜆(𝑛) is given by

𝑝𝜆(𝑛) = 𝜆𝑛

𝑛!
exp(−𝜆)

(a) Find the first three moments about the origin, ⟨𝑛⟩, ⟨𝑛2⟩, and ⟨𝑛3⟩.1

(b) The Poisson distribution has the peculiar property that mean and variance are equal, implying

⟨𝑛2⟩
⟨𝑛⟩2 − 1 = 1

⟨𝑛⟩
.

Show that this is valid.

2.1 Solution

(a) Use the MGF to compute the first three moments about the origin

⟨𝑛1⟩ = d𝑚(𝑡)
d𝑡

∣
𝑡=0

= d
d𝑡

e𝜆(e𝑡−1)∣
𝑡=0

= 𝜆e𝑡e𝜆(e𝑡−1)∣
𝑡=0

= 𝜆e0e1−1 = 𝜆

⟨𝑛2⟩ = d2𝑚(𝑡)
d𝑡2 ∣

𝑡=0

= d2

d𝑡2 e𝜆(e𝑡−1)∣
𝑡=0

= d
d𝑡

𝜆e𝑡e𝜆(e𝑡−1)∣
𝑡=0

= 𝜆e𝑡e𝜆(e𝑡−1) + 𝜆2e2𝑡e𝜆(e𝑡−1)∣
𝑡=0

= 𝜆 + 𝜆2

⟨𝑛3⟩ = d3𝑚(𝑡)
d𝑡3 ∣

𝑡=0

= d3

d𝑡3 e𝜆(e𝑡−1)∣
𝑡=0

= d2

d𝑡2 𝜆e𝑡e𝜆(e𝑡−1)∣
𝑡=0

= d
d𝑡

𝜆e𝑡e𝜆(e𝑡−1) + 𝜆2e2𝑡e𝜆(e𝑡−1)∣
𝑡=0

= d
d𝑡

𝜆e𝑡e𝜆(e𝑡−1) + 3(𝜆e𝑡)2e𝜆(e𝑡−1) + (𝜆e𝑡)3e𝜆(e𝑡−1)∣
𝑡=0

= 𝜆 + 3𝜆2 + 𝜆3

(b) From (a), we have ⟨𝑛⟩ = 𝜆 and ⟨𝑛2⟩ = 𝜆 + 𝜆2. From these, the identity is straightforward to verify

⟨𝑛2⟩
⟨𝑛⟩2 − 1 = 𝜆 + 𝜆2

𝜆2 − 1 = 𝜆
𝜆2 = 1

⟨𝑛⟩
.

1A genuine attempt at solving the original assignment will also get you full points.
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3 Generalized Fokker–Planck equation (4 points)

We propose to describe a continuous stochastic process of a probability density, where we will make use of a
central-moment expansion and assume a Markovian (i.e., memoryless) description.

(a) Formal-moment expansion: Consider the (stationary2) probability distribution, 𝑝(𝑥), given its set of
moments about the origin, 𝜇′

𝑛. Show that you can express the distribution in terms of its moments:

𝑝(𝑥) =
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝜇′

𝑛
𝑛!

𝛿(𝑥).

Hint: The derivatives of the Dirac delta function follow the relation:

1
2𝜋

∫
∞

−∞
d𝑘 (𝑖𝑘)𝑛e−𝑖𝑘𝑥 = (− 𝜕

𝜕𝑥
)

𝑛
𝛿(𝑥)

(b) Kramers–Moyal expansion: We convert 𝑝 into a transition probability function, 𝑝(𝑥, 𝑡|𝑥0, 𝑡0), where 𝑥
and 𝑡 denote the spatial coordinate and time, respectively. The moments about the origin become moments
about the mean, i.e., we work with 𝜇𝑛 instead of 𝜇′

𝑛. Because of the expansion in (a), the time variable
may only affect the moments, not the Dirac delta, i.e.,

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) =
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝛿(𝑥 − 𝑥0)

𝑛!
𝜇𝑛(𝑡|𝑥0, 𝑡0).

Invoke Markovianity of 𝑝 by making use of the Chapman–Kolmogorov equation

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) = ∫ d𝑥1 𝑝(𝑥, 𝑡|𝑥1, 𝑡1)𝑝(𝑥1, 𝑡1|𝑥0, 𝑡0).

This effectively factorizes the transition probability in time. Work with an intermediate step such that
𝑡1 = 𝑡 − 𝜏, where 𝜏 is small. Show that the transition probability follows the differential equation

𝜕
𝜕𝑡

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) =
∞

∑
𝑛=1

(− 𝜕
𝜕𝑥

)
𝑛

𝐷(𝑛)(𝑥, 𝑡)𝑝(𝑥, 𝑡|𝑥0, 𝑡0),

where the coefficients
𝐷(𝑛)(𝑥, 𝑡) ∶= lim

𝜏→0

𝜇𝑛(𝑡|𝑥, 𝑡 − 𝜏)
𝑛!𝜏

are called the Kramers–Moyal coefficients.

(c) Fokker–Planck equation: Assume that the transition probability 𝑝(𝑥, 𝑡|𝑥0, 𝑡 − 𝜏) has only two non-zero
moments about the mean: 𝜇1(𝑡|𝑥, 𝑡 − 𝜏) = 𝛾𝜏 and 𝜇2(𝑡|𝑥, 𝑡 − 𝜏) = 𝜎2𝜏, where 𝛾 and 𝜎 are real numbers.
What does the differential equation simplify to? (This is called the Fokker–Planck equation—it contains
two terms: drift and diffusion.)

2i.e., does not change with time.
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3.1 Solution

(a) Moments about the origin take a simple form

𝜇′
𝑛 = ∫ d𝑥 𝑥𝑛𝑝(𝑥).

Moreover, we can compute the Fourier transform of 𝑝

̃𝑝(𝑘) = ∫ d𝑥 e𝑖𝑘𝑥𝑝(𝑥) = ∫ d𝑥
∞

∑
𝑛=0

(𝑖𝑘)𝑛

𝑛!
𝑥𝑛𝑝(𝑥) =

∞
∑
𝑛=0

(𝑖𝑘)𝑛

𝑛!
𝜇′

𝑛.

We can plug this in the inverse Fourier transform

𝑝(𝑥) = 1
2𝜋

∫
∞

−∞
d𝑘e−𝑖𝑘𝑥 ̃𝑝(𝑘) = 1

2𝜋
∫

∞

−∞
d𝑘e−𝑖𝑘𝑥

∞
∑
𝑛=0

(𝑖𝑘)𝑛

𝑛!
𝜇′

𝑛 =
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝜇′

𝑛
𝑛!

𝛿(𝑥).

(b) Use Chapman–Kolmogorov for intermediate step (𝑥1, 𝑡1 = 𝑡 − 𝜏), where 𝜏 is small:

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) = ∫ d𝑥1

∞
∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 𝛿(𝑥 − 𝑥1)

𝑛!
𝜇𝑛(𝑡|𝑥1, 𝑡 − 𝜏)𝑝(𝑥1, 𝑡 − 𝜏|𝑥0, 𝑡0)

=
∞

∑
𝑛=0

(− 𝜕
𝜕𝑥

)
𝑛 1

𝑛!
𝜇𝑛(𝑡|𝑥, 𝑡 − 𝜏)𝑝(𝑥, 𝑡 − 𝜏|𝑥0, 𝑡0)

Note that the term 𝑛 = 0 is associated with 𝜇0 = ∫ d𝑥 𝑝(𝑥) = 1 by normalization. We subtract it out and
divide both sides by the lag time, 𝜏

1
𝜏

[𝑝(𝑥, 𝑡|𝑥0, 𝑡0) − 𝑝(𝑥, 𝑡 − 𝜏|𝑥0, 𝑡0)] = 1
𝜏

∞
∑
𝑛=1

(− 𝜕
𝜕𝑥

)
𝑛 1

𝑛!
𝜇𝑛(𝑡|𝑥, 𝑡 − 𝜏)𝑝(𝑥, 𝑡 − 𝜏|𝑥0, 𝑡0)

Take the limit 𝜏 → 0+ and use the definition of the Kramers–Moyal coefficients to yield the desired
differential equation

𝜕
𝜕𝑡

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) =
∞

∑
𝑛=1

(− 𝜕
𝜕𝑥

)
𝑛

𝐷(𝑛)(𝑥, 𝑡)𝑝(𝑥, 𝑡|𝑥0, 𝑡0),

which is called the generalized Fokker–Planck equation.

(c) If only the first two moments are non-zero, then we have

𝜕
𝜕𝑡

𝑝(𝑥, 𝑡|𝑥0, 𝑡0) = [− 𝜕
𝜕𝑥

𝐷(1)(𝑥, 𝑡) + 𝜕2

𝜕𝑥2 𝐷(2)(𝑥, 𝑡)] 𝑝(𝑥, 𝑡|𝑥0, 𝑡0)

= [−𝛾 𝜕
𝜕𝑥

+ 1
2

𝜎2 𝜕2

𝜕𝑥2 ] 𝑝(𝑥, 𝑡|𝑥0, 𝑡0).

4 Random walks (2 points)

Write a script to sample the end-points of two families of random walks:

1. Brownian motion, where steps are drawn according to a standard Gaussian
2. A Lévy walk, where steps are drawn according to the Cauchy distribution

𝑝(𝑥)d𝑥 = 1
𝜋

1
1 + 𝑥2 d𝑥.

For both types of random walks, plot the variance of the end points as a function of the number of steps, 𝑛,
of the walk. Include the theoretical variance for Brownian motion. Use a log-log representation for the plot.
Average over 100 random walks each point, and consider the numbers of steps 𝑛 = [10, 20, … , 1000].
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4.1 Solution

import numpy as np
import matplotlib.pyplot as plt

def brownian_walk(n) -> float:
steps = np.random.normal(0, 1, size=n)
return np.cumsum(steps)[-1]

def cauchy_sample(n) -> float:
steps = np.sum(np.random.standard_cauchy(n))
return np.cumsum(steps)[-1]

# Parameters
num_steps_list = np.arange(10, 1000, 10) # Different numbers of steps to monitor
num_samples = 100 # Number of random walks to sample for each number of steps

variances_brownian = []
variances_cauchy = []

# Compute the variance of the endpoints for each number of steps
for n in num_steps_list:

endpoints_brownian = [brownian_walk(n) for _ in range(num_samples)]
variance_brownian = np.var(endpoints_brownian)
variances_brownian.append(variance_brownian)

endpoints_cauchy = [cauchy_sample(n) for _ in range(num_samples)]
variance_cauchy = np.var(endpoints_cauchy)
variances_cauchy.append(variance_cauchy)

# Plot
plt.plot(num_steps_list, variances_brownian, label='Brownian Walk')
plt.plot(num_steps_list, variances_cauchy, label='Cauchy Distribution', color='green')
plt.plot(num_steps_list, num_steps_list, 'r--', label='Theoretical variance for Brownian')
plt.xlabel('Number of steps')
plt.ylabel('Variance')
plt.legend()
plt.loglog()
plt.title('Variance vs. Number of Steps')
plt.grid(True)
plt.show()
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