Computational Statistics and Data Analysis (MVComp2)

Solutions to exercise 4

Lecturer Tristan Bereau
Semester Wi23/24
Due Nov. 16, 2023, 23:59

1 Exponential distribution (2 points)

The exponential distribution is defined on the interval $[0,+\infty)$ as

$$
p(x) \propto \exp (-x) .
$$

(a) Determine the moment-generating function $m(t)$ for the exponential distribution, $p(x)$.
(b) Verify that $\left\langle x^{n}\right\rangle=n$!.

1.1 Solution

(a) Start from the definition

$$
m(t)=E\left[e^{t X}\right]=\int_{0}^{\infty} \mathrm{d} x e^{(t-1) x}=\left[\frac{e^{(t-1) x}}{t-1}\right]_{0}^{\infty}=\frac{1}{1-t}
$$

(b) Compute the moments about the origin:

$$
\left\langle x^{n}\right\rangle=\int_{0}^{\infty} \mathrm{d} x x^{n} p(x)=\int_{0}^{\infty} \mathrm{d} x x^{n} \mathrm{e}^{-x}
$$

Recall the definition of the Gamma function

$$
\Gamma(n)=\int_{0}^{\infty} \mathrm{d} x x^{n-1} \mathrm{e}^{-x}=(n-1)!,
$$

such that $\left\langle x^{n}\right\rangle=\Gamma(n+1)=n!$.

2 Poisson distribution (2 points)

The Poisson distribution $p_{\lambda}(n)$ is given by

$$
p_{\lambda}(n)=\frac{\lambda^{n}}{n!} \exp (-\lambda)
$$

(a) Find the first three moments about the origin, $\langle n\rangle,\left\langle n^{2}\right\rangle$, and $\left\langle n^{3}\right\rangle .{ }^{1}$
(b) The Poisson distribution has the peculiar property that mean and variance are equal, implying

$$
\frac{\left\langle n^{2}\right\rangle}{\langle n\rangle^{2}}-1=\frac{1}{\langle n\rangle} .
$$

Show that this is valid.

2.1 Solution

(a) Use the MGF to compute the first three moments about the origin

$$
\begin{aligned}
&\left\langle n^{1}\right\rangle=\left.\frac{\mathrm{d} m(t)}{\mathrm{d} t}\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0}=\left.\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0}=\lambda \mathrm{e}^{0} \mathrm{e}^{1-1}=\lambda \\
&\left\langle n^{2}\right\rangle=\left.\frac{\mathrm{d}^{2} m(t)}{\mathrm{d} t^{2}}\right|_{t=0}=\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0}=\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}+\left.\lambda^{2} \mathrm{e}^{2 t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0}=\lambda+\lambda^{2} \\
&\left\langle n^{3}\right\rangle=\left.\frac{\mathrm{d}^{3} m(t)}{\mathrm{d} t^{3}}\right|_{t=0} \\
&=\left.\frac{\mathrm{d}^{3}}{\mathrm{~d} t^{3}} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0} \\
&=\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0} \\
&=\frac{\mathrm{d}}{\mathrm{~d} t} \lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}+\left.\lambda^{2} \mathrm{e}^{2 t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0} \\
&=\frac{\mathrm{d}}{\mathrm{~d} t} \lambda \mathrm{e}^{t} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}+3\left(\lambda \mathrm{e}^{t}\right)^{2} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}+\left.\left(\lambda \mathrm{e}^{t}\right)^{3} \mathrm{e}^{\lambda\left(\mathrm{e}^{t}-1\right)}\right|_{t=0} \\
&=\lambda+3 \lambda^{2}+\lambda^{3}
\end{aligned}
$$

(b) From (a), we have $\langle n\rangle=\lambda$ and $\left\langle n^{2}\right\rangle=\lambda+\lambda^{2}$. From these, the identity is straightforward to verify

$$
\frac{\left\langle n^{2}\right\rangle}{\langle n\rangle^{2}}-1=\frac{\lambda+\lambda^{2}}{\lambda^{2}}-1=\frac{\lambda}{\lambda^{2}}=\frac{1}{\langle n\rangle} .
$$

[^0]
3 Generalized Fokker-Planck equation (4 points)

We propose to describe a continuous stochastic process of a probability density, where we will make use of a central-moment expansion and assume a Markovian (i.e., memoryless) description.
(a) Formal-moment expansion: Consider the (stationary ${ }^{2}$) probability distribution, $p(x)$, given its set of moments about the origin, μ_{n}^{\prime}. Show that you can express the distribution in terms of its moments:

$$
p(x)=\sum_{n=0}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{\mu_{n}^{\prime}}{n!} \delta(x) .
$$

Hint: The derivatives of the Dirac delta function follow the relation:

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k(i k)^{n} \mathrm{e}^{-i k x}=\left(-\frac{\partial}{\partial x}\right)^{n} \delta(x)
$$

(b) Kramers-Moyal expansion: We convert p into a transition probability function, $p\left(x, t \mid x_{0}, t_{0}\right)$, where x and t denote the spatial coordinate and time, respectively. The moments about the origin become moments about the mean, i.e., we work with μ_{n} instead of μ_{n}^{\prime}. Because of the expansion in (a), the time variable may only affect the moments, not the Dirac delta, i.e.,

$$
p\left(x, t \mid x_{0}, t_{0}\right)=\sum_{n=0}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{\delta\left(x-x_{0}\right)}{n!} \mu_{n}\left(t \mid x_{0}, t_{0}\right) .
$$

Invoke Markovianity of p by making use of the Chapman-Kolmogorov equation

$$
p\left(x, t \mid x_{0}, t_{0}\right)=\int \mathrm{d} x_{1} p\left(x, t \mid x_{1}, t_{1}\right) p\left(x_{1}, t_{1} \mid x_{0}, t_{0}\right) .
$$

This effectively factorizes the transition probability in time. Work with an intermediate step such that $t_{1}=t-\tau$, where τ is small. Show that the transition probability follows the differential equation

$$
\frac{\partial}{\partial t} p\left(x, t \mid x_{0}, t_{0}\right)=\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} D^{(n)}(x, t) p\left(x, t \mid x_{0}, t_{0}\right)
$$

where the coefficients

$$
D^{(n)}(x, t):=\lim _{\tau \rightarrow 0} \frac{\mu_{n}(t \mid x, t-\tau)}{n!\tau}
$$

are called the Kramers-Moyal coefficients.
(c) Fokker-Planck equation: Assume that the transition probability $p\left(x, t \mid x_{0}, t-\tau\right)$ has only two non-zero moments about the mean: $\mu_{1}(t \mid x, t-\tau)=\gamma \tau$ and $\mu_{2}(t \mid x, t-\tau)=\sigma^{2} \tau$, where γ and σ are real numbers. What does the differential equation simplify to? (This is called the Fokker-Planck equation-it contains two terms: drift and diffusion.)

[^1]
3.1 Solution

(a) Moments about the origin take a simple form

$$
\mu_{n}^{\prime}=\int \mathrm{d} x x^{n} p(x)
$$

Moreover, we can compute the Fourier transform of p

$$
\tilde{p}(k)=\int \mathrm{d} x \mathrm{e}^{i k x} p(x)=\int \mathrm{d} x \sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} x^{n} p(x)=\sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} \mu_{n}^{\prime} .
$$

We can plug this in the inverse Fourier transform

$$
p(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k \mathrm{e}^{-i k x} \tilde{p}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k \mathrm{e}^{-i k x} \sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} \mu_{n}^{\prime}=\sum_{n=0}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{\mu_{n}^{\prime}}{n!} \delta(x) .
$$

(b) Use Chapman-Kolmogorov for intermediate step $\left(x_{1}, t_{1}=t-\tau\right)$, where τ is small:

$$
\begin{aligned}
p\left(x, t \mid x_{0}, t_{0}\right) & =\int \mathrm{d} x_{1} \sum_{n=0}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{\delta\left(x-x_{1}\right)}{n!} \mu_{n}\left(t \mid x_{1}, t-\tau\right) p\left(x_{1}, t-\tau \mid x_{0}, t_{0}\right) \\
& =\sum_{n=0}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{1}{n!} \mu_{n}(t \mid x, t-\tau) p\left(x, t-\tau \mid x_{0}, t_{0}\right)
\end{aligned}
$$

Note that the term $n=0$ is associated with $\mu_{0}=\int \mathrm{d} x p(x)=1$ by normalization. We subtract it out and divide both sides by the lag time, τ

$$
\frac{1}{\tau}\left[p\left(x, t \mid x_{0}, t_{0}\right)-p\left(x, t-\tau \mid x_{0}, t_{0}\right)\right]=\frac{1}{\tau} \sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} \frac{1}{n!} \mu_{n}(t \mid x, t-\tau) p\left(x, t-\tau \mid x_{0}, t_{0}\right)
$$

Take the limit $\tau \rightarrow 0^{+}$and use the definition of the Kramers-Moyal coefficients to yield the desired differential equation

$$
\frac{\partial}{\partial t} p\left(x, t \mid x_{0}, t_{0}\right)=\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial x}\right)^{n} D^{(n)}(x, t) p\left(x, t \mid x_{0}, t_{0}\right)
$$

which is called the generalized Fokker-Planck equation.
(c) If only the first two moments are non-zero, then we have

$$
\begin{aligned}
\frac{\partial}{\partial t} p\left(x, t \mid x_{0}, t_{0}\right) & =\left[-\frac{\partial}{\partial x} D^{(1)}(x, t)+\frac{\partial^{2}}{\partial x^{2}} D^{(2)}(x, t)\right] p\left(x, t \mid x_{0}, t_{0}\right) \\
& =\left[-\gamma \frac{\partial}{\partial x}+\frac{1}{2} \sigma^{2} \frac{\partial^{2}}{\partial x^{2}}\right] p\left(x, t \mid x_{0}, t_{0}\right)
\end{aligned}
$$

4 Random walks (2 points)

Write a script to sample the end-points of two families of random walks:

1. Brownian motion, where steps are drawn according to a standard Gaussian
2. A Lévy walk, where steps are drawn according to the Cauchy distribution

$$
p(x) \mathrm{d} x=\frac{1}{\pi} \frac{1}{1+x^{2}} \mathrm{~d} x .
$$

For both types of random walks, plot the variance of the end points as a function of the number of steps, n, of the walk. Include the theoretical variance for Brownian motion. Use a log-log representation for the plot. Average over 100 random walks each point, and consider the numbers of steps $n=[10,20, \ldots, 1000]$.

4.1 Solution

```
import numpy as np
import matplotlib.pyplot as plt
def brownian_walk(n) -> float:
    steps = np.random.normal(0, 1, size=n)
    return np.cumsum(steps)[-1]
def cauchy_sample(n) -> float:
    steps = np.sum(np.random.standard_cauchy(n))
    return np.cumsum(steps)[-1]
# Parameters
num_steps_list = np.arange(10, 1000, 10) # Different numbers of steps to monitor
num_samples = 100 # Number of random walks to sample for each number of steps
variances_brownian = []
variances_cauchy = []
# Compute the variance of the endpoints for each number of steps
for n in num_steps_list:
    endpoints_brownian = [brownian_walk(n) for _ in range(num_samples)]
    variance_brownian = np.var(endpoints_brownian)
    variances_brownian.append(variance_brownian)
    endpoints_cauchy = [cauchy_sample(n) for _ in range(num_samples)]
    variance_cauchy = np.var(endpoints_cauchy)
    variances_cauchy.append(variance_cauchy)
# Plot
plt.plot(num_steps_list, variances_brownian, label='Brownian Walk')
plt.plot(num_steps_list, variances_cauchy, label='Cauchy Distribution', color='green')
plt.plot(num_steps_list, num_steps_list, 'r--', label='Theoretical variance for Brownian')
plt.xlabel('Number of steps')
plt.ylabel('Variance')
plt.legend()
plt.loglog()
plt.title('Variance vs. Number of Steps')
plt.grid(True)
plt.show()
```

Variance vs. Number of Steps

[^0]: ${ }^{1} \mathrm{~A}$ genuine attempt at solving the original assignment will also get you full points.

[^1]: ${ }^{2}$ i.e., does not change with time.

