
Computational Statistics and Data Analysis (MVComp2)
Solutions to exercise 5

Lecturer Tristan Bereau Semester Wi23/24
Due Nov. 23, 2023, 23:59

1 College achievement test, again (2 points)

The time required to complete a college achievement test follows an unknown distribution with mean 70 minutes
and standard deviation 12 minutes. The test is terminated after 90 min. Is that enough time to allow 90% of
the students to complete the test?

1.1 Solution

Use Chebyshev’s inequality:
𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤ 1

𝑘2 .

We want to ensure that at least 90% of the students can complete the test, which means we want

1 − 1
𝑘2 ≥ 0.90.

Solving for 𝑘 we get 𝑘 ≥
√

10 = 3.16.

We are concerned with the upper tail of the distribution, leading to 𝜇 + 𝑘𝜎 ≈ 108 min. This is larger than 90
min, which may not be long enough to allow 90% of the students to complete the test.

2 Microscope (2 points)

You look into a microscope to observe 𝑁 cells at locations {(𝑥𝑛, 𝑦𝑛)}. You would like to infer the field of view
of the microscope. Assume the field of view is rectangular and that the cells’ locations are independently and
uniformly distributed. Use maximum likelihood to infer values of (𝑥min, 𝑦min, 𝑥max, 𝑦max).
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2.1 Solution

Denote the edges of the field of view by 𝑎 and 𝑏 on the 𝑥 axis and 𝑐 and 𝑑 on the 𝑦 axis. We consider
the likelihood function, 𝐿, for a collection of 𝑁 points uniformly distributed on a two-dimensional space,
𝑋𝑋𝑋 = {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁)}. Independence allows us to factorize the likelihood terms

𝐿𝑋𝑋𝑋(𝑎, 𝑏, 𝑐, 𝑑) =
𝑁

∏
𝑖=1

1
𝑏 − 𝑎

𝟙[𝑎,𝑏](𝑥𝑖)
1

𝑑 − 𝑐
𝟙[𝑐,𝑑](𝑦𝑖),

where 𝟙[𝑎,𝑏](𝑥𝑖) is the indicator function (i.e., it is 1 in the subset 𝑥𝑖 ∈ [𝑎, 𝑏] and 0 otherwise).

It is more convenient to work with the log-likelihood, 𝑙,

𝑙𝑋𝑋𝑋(𝑎, 𝑏, 𝑐, 𝑑) = −𝑁 log(𝑏 − 𝑎) − 𝑁 log(𝑑 − 𝑐).

We compute the partial derivative for each parameter

𝜕𝑙
𝜕𝑎

= 𝑁
𝑏 − 𝑎

𝜕𝑙
𝜕𝑏

= − 𝑁
𝑏 − 𝑎

𝜕𝑙
𝜕𝑐

= 𝑁
𝑑 − 𝑐

𝜕𝑙
𝜕𝑑

= − 𝑁
𝑑 − 𝑐

.

Taking for instance parameter 𝑎, we can see that the derivative of the log-likelihood is positive and monotonically
increases with increasing values of 𝑎. Thus the MLE will be largest at the largest possible value. On the other
hand, any sample that falls outside the interval [𝑥min, 𝑥max] (resp. for y axis) will lead to a likelihood of zero.
Thus we obtain:

𝑎 = 𝑥min = min(𝑥1, … , 𝑥𝑁)
𝑏 = 𝑥max = max(𝑥1, … , 𝑥𝑁)
𝑐 = 𝑦min = min(𝑦1, … , 𝑦𝑁)
𝑑 = 𝑦max = max(𝑦1, … , 𝑦𝑁)

3 Fisher matrix for linear fitting (4 points)

Suppose you’re fitting a linear model, 𝑓𝑘(𝜃) = 𝑎𝑥𝑘 + 𝑏, where 𝜃 = (𝑎, 𝑏), and you can only measure two data
points. At what values of 𝑥 would you choose to measure? While you may intuitively place them as far as
possible, we will see that this is not necessarily the best strategy.

(a) You are given 𝑁 iid data points 𝑥𝑥𝑥 = {𝑥1, … , 𝑥𝑁}, as well as a model for the data, 𝑓, with parameters, 𝜃,
such that 𝑓𝑘(𝜃) predicts the 𝑘th data point. Assume that the model leads to Gaussian errors: deviations
between data points 𝑥𝑘 and their expected values, 𝑓𝑘(𝜃), follow a Gaussian distribution with mean 0 and
standard deviation 𝜎𝑘. Recall the expression for the Fisher information matrix

𝐹𝑖𝑗 = −𝐸 [𝜕2 log ℒ(𝑥𝑥𝑥|𝜃)
𝜕𝜃𝑖𝜕𝜃𝑗

] ,

where ℒ(𝑥𝑥𝑥|𝜃) is the likelihood function. Show that the Fisher matrix is given by

𝐹 = ⎡⎢
⎣

𝑥2
1

𝜎2
1

+ 𝑥2
2

𝜎2
2

𝑥1
𝜎2

1
+ 𝑥2

𝜎2
2

𝑥1
𝜎2

1
+ 𝑥2

𝜎2
2

𝑥2
1

𝜎2
1

+ 𝑥2
2

𝜎2
2

⎤⎥
⎦

.
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(b) Say you place your first point at 𝑥1 = 1, and assume that 𝜎1 = 𝜎2. Use the expression derived in (a) to
show that you should place your other point at 𝑥2 = −1.

3.1 Solution

(a)

The likelihood function can be written as

ℒ(𝑥𝑥𝑥|𝜃) =
𝑁

∏
𝑘=1

1

√2𝜋𝜎2
𝑘

exp (−(𝑥𝑘 − 𝑓𝑘(𝜃))2

2𝜎2
𝑘

)

which yields the log-likelihood

log ℒ(𝑥𝑥𝑥|𝜃) = −1
2

𝑁
∑
𝑘=1

[log(2𝜋𝜎2
𝑘) + (𝑥𝑘 − 𝑓𝑘(𝜃))2

2𝜎2
𝑘

] .

Take the first derivative with respect to each parameter 𝜃𝑖

𝜕
𝜕𝜃𝑖

log ℒ(𝑥𝑥𝑥|𝜃) = −1
2

𝑁
∑
𝑘=1

[0 + 2(𝑥𝑘 − 𝑓𝑘(𝜃))
𝜎2

𝑘
(−𝜕𝑓𝑘(𝜃)

𝜕𝜃𝑖
)]

=
𝑁

∑
𝑘=1

(𝑥𝑘 − 𝑓𝑘(𝜃))
𝜎2

𝑘

𝜕𝑓𝑘(𝜃)
𝜕𝜃𝑖

.

For the Fisher matrix we need the second derivatives
𝜕2

𝜕𝜃𝑗𝜕𝜃𝑖
log ℒ(𝑥𝑥𝑥|𝜃) =

𝑁
∑
𝑘=1

[(𝑥𝑘 − 𝑓𝑘(𝜃))
𝜎2

𝑘

𝜕2𝑓𝑘(𝜃)
𝜕𝜃𝑗𝜕𝜃𝑖

− 1
𝜎2

𝑘

𝜕𝑓𝑘(𝜃)
𝜕𝜃𝑗

𝜕𝑓𝑘(𝜃)
𝜕𝜃𝑖

] .

Taking the expectation value, the first term will be zero, by the definition of the mean. We are left with

𝐹𝑖𝑗 =
𝑁

∑
𝑘=1

1
𝜎2

𝑘

𝜕𝑓𝑘(𝜃)
𝜕𝜃𝑗

𝜕𝑓𝑘(𝜃)
𝜕𝜃𝑖

.

Compute the Fisher matrix for the linear model

𝐹 = [
𝑥2

1
𝜎2

1
+ 𝑥2

2
𝜎2

2

𝑥1
𝜎2

1
+ 𝑥2

𝜎2
2𝑥1

𝜎2
1

+ 𝑥2
𝜎2

2

1
𝜎2

1
+ 1

𝜎2
2

] .

(b)

Recall the expression for 2 × 2 matrix inversion

𝐴 = [𝑎 𝑏
𝑐 𝑑] , 𝐴−1 = 1

𝑎𝑑 − 𝑏𝑐
[ 𝑑 −𝑏
−𝑐 𝑎 ]

Invert the Fisher matrix to get the covariance matrix:

Σ = 𝐹 −1 = 1
(𝑥1 − 𝑥2)2 [ 𝜎2

1 + 𝜎2
2 −𝑥1𝜎2

2 − 𝑥2𝜎2
1

−𝑥1𝜎2
2 − 𝑥2𝜎2

1 𝑥1𝜎2
2 + 𝑥2𝜎2

1
] .

The most information between the two data points will be where the off-diagonal components of the covariance
are closest to zero. Setting them to zero, we obtain the condition

𝑥1
𝑥2

= −𝜎2
1

𝜎2
2

.

If 𝜎1 = 𝜎2 we obtain 𝑥2 = −𝑥1. Thus we should set the point at 𝑥2 = −1.
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4 Linear fit, continued (2 points)

Continuing on problem 3, we would like to determine where to place a third point so as to improve on the
estimation of the parameters. Intuitively you suggest to place it at 𝑥3 = 0. Write a script to compute the
covariance matrix. Does this third point help you improve your confidence about the slope and/or the intercept
of 𝑓?

4.1 Solution

import numpy

def compute_covariance_matrix(xvals: list[float], sigma: float, n_par: int):
F = numpy.zeros([n_par,n_par])
for x in xvals:
for i in range(n_par):

if i==0:
dfdpi = x

else:
dfdpi = 1

for j in range(n_par):
if j==0:

dfdpj = x
else:

dfdpj = 1
F[i,j] += dfdpi*dfdpj / (sigma**2)

cov_mat = numpy.mat(F).I
return numpy.mat(F).I

sigma = 0.1
n_par = 2
cov_mat_2_points = compute_covariance_matrix((-1., 1.), sigma, n_par)
cov_mat_3_points = compute_covariance_matrix((-1., 0., 1.), sigma, n_par)

print("Matrix for 2 points:")
print(cov_mat_2_points)
print("Matrix for 3 points:")
print(cov_mat_3_points)

Matrix for 2 points:
[[0.005 0. ]
[0. 0.005]]
Matrix for 3 points:
[[0.005 0. ]
[0. 0.00333333]]

The results show that the variance of the slope, 𝑎, remains the same, but adding the third point led to a reduction
in the variance of the intercept, 𝑏.
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