
Computational Statistics and Data Analysis (MVComp2)
Solutions to exercise 7

Lecturer Tristan Bereau Semester Wi23/24
Due Dec. 7, 2023, 23:59

1 Poisson regression (2 points)

Consider a response variable defined on the positive integer domain, 𝑦𝑛 ∈ {0, 1, … }. We propose to fit a model
using Poisson regression, such that the distribution’s parameter 𝜆𝑛 = 𝜆𝑛(𝑤𝑤𝑤⊺𝑥𝑥𝑥𝑛) is a linear function of the input
variables.

(a) Show that you can write Poisson regression as a generalized linear model (GLM).

(b) Use the GLM to determine the first two moments.

1.1 Solution

(a) The Poisson distribution is given by

𝑝(𝑦𝑛|𝑥𝑥𝑥𝑛,𝑤𝑤𝑤) = e−𝜆𝑛
𝜆𝑦𝑛𝑛

𝑦𝑛!
The log pdf is thus given by

log 𝑝(𝑦𝑛|𝑥𝑥𝑥𝑛,𝑤𝑤𝑤) = 𝑦𝑛 log 𝜆𝑛 − 𝜆𝑛 − log(𝑦𝑛!)
= 𝑦𝑛𝜂𝑛 − 𝐴(𝜂𝑛) + ℎ(𝑦𝑛)

where we associate 𝜂𝑛 = log(𝜆𝑛) = 𝑤𝑤𝑤⊺𝑥𝑥𝑥𝑛 to ensure that the natural parameter is a linear function of the
inputs. Thus we have 𝜆𝑛 = exp(𝑤𝑤𝑤⊺𝑥𝑥𝑥𝑛). Further we have 𝐴(𝜂𝑛) = 𝜆𝑛 = e𝜂𝑛 , and ℎ(𝑦𝑛) = − log(𝑦𝑛!).

(b) The first two moments are given by

𝐸[𝑦𝑛|𝑥𝑥𝑥𝑛,𝑤𝑤𝑤] = d𝐴
d𝜂𝑛

= e𝜂𝑛 = 𝜆𝑛

Var[𝑦𝑛|𝑥𝑥𝑥𝑛,𝑤𝑤𝑤] = d2𝐴
d𝜂2

𝑛
= e𝜂𝑛 = 𝜆𝑛
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2 Binary-output linear regression (3 points)

Suppose we have binary input data, 𝑥𝑖 ∈ {0, 1} and output two-dimensional response vector, 𝑦𝑖 ∈ ℝ2. The data
is the following

𝑥 𝑦

0 (−1, −1)⊺

0 (−1, −2)⊺

0 (−2, −1)⊺

1 (1, 1)⊺

1 (1, 2)⊺

1 (2, 1)⊺

Embed each 𝑥𝑖 into two dimensions using the following basis function

𝜙(0) = (1
0
), 𝜙(1) = (0

1
).

The model becomes ̂𝑦 = 𝑊𝑊𝑊𝜙(𝑥), where 𝑊𝑊𝑊 is a 2 × 2 matrix. Compute the maximum likelihood estimator for
𝑊𝑊𝑊.

2.1 Solution

Recall the solution for an ordinary least squares problem

𝑊𝑊𝑊 = (Φ⊺Φ)−1Φ⊺𝑦𝑦𝑦,

where Φ uses the basis function 𝜙(𝑥) over the data

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The product yields

Φ⊺Φ = [3 0
0 3]

and its inverse simply yields

(Φ⊺Φ)−1 = [1/3 0
0 1/3] .

Moreoever, the other product is given by

Φ⊺𝑌 = [−4 −4
4 4 ]

such that
𝑊𝑊𝑊 = [−4/3 −4/3

4/3 4/3 ] .
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3 Posterior credible interval (3 points)

The Bayesian analog of a confidence interval is called a credible interval. Let’s work with that here. Consider
𝑋 ∼ 𝒩(𝜇, 𝜎2 = 4). The mean, 𝜇, is unknown, but has a prior 𝜇 ∼ 𝒩(𝜇0, 𝜎2

0 = 9). After seeing 𝑛 samples the
posterior is 𝜇 ∼ 𝒩(𝜇𝑛, 𝜎2

𝑛).

(a) Determine 𝜇𝑛 and 𝜎2
𝑛.

(b) How big does 𝑛 have to be to ensure

𝑝(𝑎 ≤ 𝜇𝑛 ≤ 𝑏|𝐷) ≥ 0.95,

where (𝑎, 𝑏) is an interval centered on 𝜇𝑛 of width 1 and 𝐷 is the data?

Hint: 95% of the probability mass of a Gaussian is within ±1.96𝜎 of the mean.

3.1 Solution

(a) Write the posterior for 𝑛 datapoints

𝑝(𝜇|𝑋) ∝ 𝑝(𝑋|𝜇)𝑝(𝜇)

= exp (− 1
2𝜎2

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝜇)2) exp (− 1
2𝜎2

0
(𝜇 − 𝜇0)2)

∝ exp (−1
2

( 𝑛
𝜎2 + 1

𝜎2
0

) 𝜇2 + (𝑛�̄�
𝜎2 + 𝜇0

𝜎2
0

) 𝜇 + … )

where the … indicate terms that do not involve 𝜇. From this expression we identify the parameters of a
Gaussian, 𝒩(𝜇𝑛, 𝜎2

𝑛)

𝜎2
𝑛 = ( 𝑛

𝜎2 + 1
𝜎2

0
)

−1

𝜇𝑛 = 𝜎2
𝑛 (𝑛�̄�

𝜎2 + 𝜇0
𝜎2

0
) .

(b) The width of the interval (𝑎, 𝑏) is 1, centered around the mean. The half-width is thus 0.5, which
corresponds to 1.96𝜎𝑛. Therefore

1.96𝜎𝑛 = 0.5
𝜎𝑛 = 0.2551

Now solve for 𝑛

𝜎2
𝑛 = ( 𝑛

𝜎2 + 1
𝜎2

0
)

−1

𝑛 = ( 1
𝜎2

𝑛
− 1

𝜎2
0

) 𝜎2

Plug in the provided values to yield 𝑛 ≈ 61.022. Therefore, 𝑛 must be at least 62 to ensure the condition
on the credible interval.
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4 Integration by Monte Carlo (2 points)

Estimate
ℓ = ∫

1

0
d𝑥 ∫

1

0
d𝑦 sin(𝑥)e−(𝑥+𝑦)

ln(1 + 𝑥)

via Monte Carlo, and give a 95% confidence interval.

4.1 Solution

import numpy as np

# Define the function to integrate
def integrand(x, y):

return np.sin(x) * np.exp(-(x + y)) / np.log(1 + x)

# Number of samples for Monte Carlo
n_samples = 1000000

# Generate random samples for x and y
x_samples = np.random.uniform(0, 1, n_samples)
y_samples = np.random.uniform(0, 1, n_samples)

integrand_values = integrand(x_samples, y_samples)
integral_estimate = np.mean(integrand_values)
integrand_std = np.std(integrand_values)
standard_error = integrand_std / np.sqrt(n_samples)

# 95% confidence interval for the mean estimate
confidence_interval = (
integral_estimate - 1.96 * standard_error,
integral_estimate + 1.96 * standard_error

)

print(
f"estimate {integral_estimate:.4f}, " \
f"interval: ({confidence_interval[0]:.4f}, {confidence_interval[1]:.4f})"

)

estimate 0.4549, interval: (0.4546, 0.4553)
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