Computational Statistics and Data Analysis (MVComp2)

Solutions to exercise 7

Lecturer Tristan Bereau
Semester Wi23/24
Due Dec. 7, 2023, 23:59

1 Poisson regression (2 points)

Consider a response variable defined on the positive integer domain, $y_{n} \in\{0,1, \ldots\}$. We propose to fit a model using Poisson regression, such that the distribution's parameter $\lambda_{n}=\lambda_{n}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}\right)$ is a linear function of the input variables.
(a) Show that you can write Poisson regression as a generalized linear model (GLM).
(b) Use the GLM to determine the first two moments.

1.1 Solution

(a) The Poisson distribution is given by

$$
p\left(y_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{w}\right)=\mathrm{e}^{-\lambda_{n}} \frac{\lambda_{n}^{y_{n}}}{y_{n}!}
$$

The log pdf is thus given by

$$
\begin{aligned}
\log p\left(y_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{w}\right) & =y_{n} \log \lambda_{n}-\lambda_{n}-\log \left(y_{n}!\right) \\
& =y_{n} \eta_{n}-A\left(\eta_{n}\right)+h\left(y_{n}\right)
\end{aligned}
$$

where we associate $\eta_{n}=\log \left(\lambda_{n}\right)=\boldsymbol{w}^{\top} \boldsymbol{x}_{n}$ to ensure that the natural parameter is a linear function of the inputs. Thus we have $\lambda_{n}=\exp \left(\boldsymbol{w}^{\top} \boldsymbol{x}_{n}\right)$. Further we have $A\left(\eta_{n}\right)=\lambda_{n}=\mathrm{e}^{\eta_{n}}$, and $h\left(y_{n}\right)=-\log \left(y_{n}!\right)$.
(b) The first two moments are given by

$$
\begin{aligned}
E\left[y_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{w}\right] & =\frac{\mathrm{d} A}{\mathrm{~d} \eta_{n}}=\mathrm{e}^{\eta_{n}}=\lambda_{n} \\
\operatorname{Var}\left[y_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{w}\right] & =\frac{\mathrm{d}^{2} A}{\mathrm{~d} \eta_{n}^{2}}=\mathrm{e}^{\eta_{n}}=\lambda_{n}
\end{aligned}
$$

2 Binary-output linear regression (3 points)

Suppose we have binary input data, $x_{i} \in\{0,1\}$ and output two-dimensional response vector, $y_{i} \in \mathbb{R}^{2}$. The data is the following

x	y
0	$(-1,-1)^{\top}$
0	$(-1,-2)^{\top}$
0	$(-2,-1)^{\top}$
1	$(1,1)^{\top}$
1	$(1,2)^{\top}$
1	$(2,1)^{\top}$

Embed each x_{i} into two dimensions using the following basis function

$$
\phi(0)=\binom{1}{0}, \quad \phi(1)=\binom{0}{1} .
$$

The model becomes $\hat{y}=\boldsymbol{W} \phi(x)$, where \boldsymbol{W} is a 2×2 matrix. Compute the maximum likelihood estimator for W.

2.1 Solution

Recall the solution for an ordinary least squares problem

$$
\boldsymbol{W}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \boldsymbol{y}
$$

where Φ uses the basis function $\phi(x)$ over the data

$$
\Phi=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

The product yields

$$
\Phi^{\top} \Phi=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

and its inverse simply yields

$$
\left(\Phi^{\top} \Phi\right)^{-1}=\left[\begin{array}{cc}
1 / 3 & 0 \\
0 & 1 / 3
\end{array}\right]
$$

Moreoever, the other product is given by

$$
\Phi^{\top} Y=\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]
$$

such that

$$
\boldsymbol{W}=\left[\begin{array}{cc}
-4 / 3 & -4 / 3 \\
4 / 3 & 4 / 3
\end{array}\right]
$$

3 Posterior credible interval (3 points)

The Bayesian analog of a confidence interval is called a credible interval. Let's work with that here. Consider $X \sim \mathcal{N}\left(\mu, \sigma^{2}=4\right)$. The mean, μ, is unknown, but has a prior $\mu \sim \mathcal{N}\left(\mu_{0}, \sigma_{0}^{2}=9\right)$. After seeing n samples the posterior is $\mu \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$.
(a) Determine μ_{n} and σ_{n}^{2}.
(b) How big does n have to be to ensure

$$
p\left(a \leq \mu_{n} \leq b \mid D\right) \geq 0.95,
$$

where (a, b) is an interval centered on μ_{n} of width 1 and D is the data?
Hint: 95% of the probability mass of a Gaussian is within $\pm 1.96 \sigma$ of the mean.

3.1 Solution

(a) Write the posterior for n datapoints

$$
\begin{aligned}
p(\mu \mid X) & \propto p(X \mid \mu) p(\mu) \\
& =\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}\right) \exp \left(-\frac{1}{2 \sigma_{0}^{2}}\left(\mu-\mu_{0}\right)^{2}\right) \\
& \propto \exp \left(-\frac{1}{2}\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right) \mu^{2}+\left(\frac{n \bar{X}}{\sigma^{2}}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \mu+\ldots\right)
\end{aligned}
$$

where the ... indicate terms that do not involve μ. From this expression we identify the parameters of a Gaussian, $\mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$

$$
\begin{gathered}
\sigma_{n}^{2}=\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1} \\
\mu_{n}=\sigma_{n}^{2}\left(\frac{n \bar{X}}{\sigma^{2}}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) .
\end{gathered}
$$

(b) The width of the interval (a, b) is 1 , centered around the mean. The half-width is thus 0.5 , which corresponds to $1.96 \sigma_{n}$. Therefore

$$
\begin{aligned}
1.96 \sigma_{n} & =0.5 \\
\sigma_{n} & =0.2551
\end{aligned}
$$

Now solve for n

$$
\begin{aligned}
\sigma_{n}^{2} & =\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1} \\
n & =\left(\frac{1}{\sigma_{n}^{2}}-\frac{1}{\sigma_{0}^{2}}\right) \sigma^{2}
\end{aligned}
$$

Plug in the provided values to yield $n \approx 61.022$. Therefore, n must be at least 62 to ensure the condition on the credible interval.

4 Integration by Monte Carlo (2 points)

Estimate

$$
\ell=\int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \mathrm{~d} y \frac{\sin (x) \mathrm{e}^{-(x+y)}}{\ln (1+x)}
$$

via Monte Carlo, and give a 95% confidence interval.

4.1 Solution

```
import numpy as np
# Define the function to integrate
def integrand(x, y):
    return np.sin(x) * np.exp(-(x + y)) / np.log(1 + x)
# Number of samples for Monte Carlo
n_samples = 1000000
# Generate random samples for x and y
x_samples = np.random.uniform(0, 1, n_samples)
y_samples = np.random.uniform(0, 1, n_samples)
integrand_values = integrand(x_samples, y_samples)
integral_estimate = np.mean(integrand_values)
integrand_std = np.std(integrand_values)
standard_error = integrand_std / np.sqrt(n_samples)
# 95% confidence interval for the mean estimate
confidence_interval = (
    integral_estimate - 1.96 * standard_error,
    integral_estimate + 1.96 * standard_error
)
print(
    f"estimate {integral_estimate:.4f}, " \
    f"interval: ({confidence_interval[0]:.4f}, {confidence_interval[1]:.4f})"
)
```

estimate 0.4549, interval: (0.4546, 0.4553)

