Computational Statistics and Data Analysis (MVComp2)

Solutions to exercise 8

Lecturer Tristan Bereau Semester Wi23/24
Due Dec. 14, 2023, 23:59

1 Partial derivative of the residual sum of squares (2 points)

Recall the residual sum of squares, RSS = |ly — Xw|3.

Show that 5
%RSS('M’) — akwk - Ck

ap = 2”95k”2
n

cp, =2 Z T (Y — U’Ik‘”z‘ﬁk) - 2mfkrk,
i=1

where w_;, corresponds to w without component k, z; _ is z; without component k, and r, =y — 'wjkx:’_k is
the residual due to using all the features except feature k.

Hint: Partition the weights into those involving k£ and those not involving k.

1.1 Solution

Write the derivative of the RSS and split the weights into those involving k£ and those not involving k to yield

the desired answer
ORSS

owy,

=23 (3 — (] w))zy,
i=1
=—2 Z(yi — (@gpwp + 2] _w_y))zy,
=1
Z?’L
=2 Z(ﬁk — Ty W) Ty,
i=1

n n
_ 2
=2 Z T Wi — 2 Z TikTik
=1 i=1

= ApWy — Cy.

2 Lasso regression (2 points)

Recall the result of problem 1, where the RSS provides the smooth part of the lasso objective
L(w) = RSS(w) + Aw|;.

(a) Find the optimal parameters, w,, as a function of ¢;. You should find a relation as illustrated in the Figure.

(b) Instead of using the optimal parameters derived in (a), it helps to approximate it with a so-called
soft-threshold function
SoftThreshold(z, §) = sign(z) max(|z| — 4, 0).

Sketch w, = SoftThreshold(5¢ d) and compare it with both the optimal parameters derived in (a), as well

as the vanilla RSS from problem 1. Interpret how the two Lasso methods affect the optimal parameters.

wy, /,’

Sk

Hint: We can generalize the notion of a derivative for certain functions with local discontinuities. Such functions
are called subdifferentiable. A famous example is the absolute value function, f(z) = |z|. Its subdifferential is
given by

—1,ifx <0

Of(x) =< [-1,1],if =0
+1,if x>0

where the notation [—1, 1] means any value between -1 and 1 inclusive.

2.1 Solution

(a) Take the derivative wrt the parameter, w,, using the definition of the subdifferential

0y, L(w) = (agwy —cg) + A0, [wl;
Aqwg—cCcg— A, wy <0
= [—Cd—A7—Cd+)\:|, ’Ll)d:O

adwd—cd+)\, ’U)d>0

This leads to three cases

1. wy; = Catd for w, < 0, leading to the condition c; < —A
2. wy = 0 with the values in the subdifferential leading to the interval c¢; € [—A, A]

— Ca—
3. wy =

These cases exactly describe what’s on the Figure.

(b) The soft threshold will look like the figure in (a). It keeps the defining feature in the interval [—\, A], which
consists of setting the parameters to 0 in that interval, at the expense of being a biased estimator away
from it. This is the shrinkage operator that removes small contributions and sets parameters to 0 instead.

3 Prostate cancer (6 points)

We will analyze a prostate cancer dataset, which you can download here: prostate.csv. It contains 97 datapoints,

each with the following features:

Variable

Description

lcavol
lweight
age
1lbph
svi

lcp
gleason

PggA4d
lpsa

(log) Cancer volume

(log) Weight

Patient age

(log) Vening Prostatic Hyperplasia
Seminal Vesicle Invasion

(log) Capsular Penetration
Gleason score

Percent of Gleason score 4 or 5
(log) Prostate Specific Antigen

The objective is to build a predictive model for 1psa. We will denote the vector of labels of 1psa, y. The rest of
the dataset will consist of the feature matrix, X, made of the abovementioned variables, as well as an extra
column [1,...,1]" to account for the intercept of your linear models.

(a) Plot the correlation between 1psa and each one of the three features that correlate the strongest with

lpsa.

(b) Check that your dataset matrix, X, is full rank.

(c) Split your data into a training and a test set. Keep 30 datapoints for the test set. (Feel free to use existing

libraries, like scikit-learn.)

(d) Implement yourself an ordinary least squares solver. Do not use existing statistics / machine learning
libraries (though feel free to use linear-algebra libraries). To simplify your task, consider filling in the

following template:

import numpy as np

from dataclasses import dataclass, field

Q@dataclass
class OrdinaryLeastSquares:

model_params: np.ndarray = field(init=False)

def __post_init__(self):

self .model_params = None

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:

data_08_prostate.csv

self.model_params = ... (fit your model)
pass

def predict(self, X_test_: np.ndarray) -> np.ndarray:
make predictions for X_test_
pass

def rmse(self, X_test_: np.ndarray, y_test_: np.ndarray) -> float:
compute the root-mean-squared-error
pass

Print out the set of optimal parameters for your training set, as well as the RMSE of the test set.

(e) Implement yourself ridge regression. Consider extending the following template:

Q@dataclass
class RidgeRegression(OrdinaryLeastSquares):
ridge_penalty: float

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
self.model_params = ... (fit your model)
pass

where ridge_penalty is the coefficient in front of the ¢, regularization term. Exclude the intercept from the
regularization procedure. Plot the values of all model parameters (except the intercept) as a function of the
regularization penalty term. Have the penalty term vary from 0 to 100. On a separate figure, plot the RMSE of
the test set as a function of the penalty term. Indicate at what penalty value your best model is.

(f) Implement yourself lasso regression. Use the objective function and soft threshold function from Problem 2
(b) to iteratively update your model parameters until convergence (controlled by num_iter in the template
code below)

Q@dataclass
class LassoRegression(OrdinaryLeastSquares) :
lasso_penalty: float

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray, num_iter: int = 1000) -> None:
self.model_params = ... (fit your model)
pass

where lasso_penalty is the coefficient in front of the ¢, regularization term. Exclude the intercep from the
regularization procedure. Plot the values of all model parameters (except the intercept) as a function of the
regularization penalty term. Have the penalty term vary from 10~! to 102. On a separate figure, plot the RMSE
of the test set as a function of the penalty term. Indicate at what penalty value your best model is.

(g) Compare your sets of best parameters across the three solvers, and comment on the impact of ridge and
lasso regression.

3.1 Solution

(a) Inspection of the data shows that the three features correlating most strongly lpsa are: lcavol, svi, lcp.
The seaborn.pairplot function allows us to plot the desired correlations.

import pandas as pd
import numpy as np
import seaborn as sns

df = pd.read_csv("data_08_prostate.csv")
column_names = df.columns
g = sns.pairplot(df[["lcavol", "svi", "lcp", "lpsa"l], height=1)

Icavol
@) @e)

27 (0 [)] " Ge@GWEe (e

SVi

ee@@e

Icp

e
-~
$
v
>
S
3

Ipsa

Icavol SVi

(b)

def extract_X_y(df_: pd.DataFrame):

X = df_.to_numpy() [:,:-1]
X = np.hstack((np.ones((X.shape[0], 1)), X))
y = df_.to_numpy() [:,-1]

return X, y

def has_full_rank(X_: np.array) -> bool:
return np.linalg.matrix_rank(X_) == X_[0].size

X, y = extract_X_y(df)
has_full rank(X)

True
(c)
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.30, random_state=42

)

X_train.shape, X_test.shape

(67, 9), (30, 9))
(d)
from sklearn.metrics import mean_squared_error

Q@dataclass
class OrdinaryLeastSquares:
model_params: np.ndarray = field(init=False)

def __post_init__(self):
self .model_params = None

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
(
np.linalg.inv(X_train_.T @ X_train_) @ X_train_.T @ y_train_

self .model_params
)

def predict(self, X_test_: np.ndarray) -> np.ndarray:
return X_test_ @ self.model_params

def rmse(self, X_test_: np.ndarray, y_test_: np.ndarray) -> float:
y_pred = self.predict(X_test_)
return np.sqrt(mean_squared_error(y_test_, y_pred))

ols = OrdinaryLeastSquares()
ols.fit(X_train, y_train)
ols.model_params, ols.rmse(X_test, y_test)

(array ([2.45462916, 0.75271916, 0.24358154, -0.19201857, 0.11429899,
0.3585389 , -0.23917874, 0.06634662, 0.13186029]),
0.6941798374525127)

(e)
import matplotlib.pyplot as plt

@dataclass

class RidgeRegression(OrdinaryLeastSquares):
ridge_penalty: float

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray) -> None:
I = np.eye(X_train_.shape[1])
Exclude intercept from regularization
1[0, 0] =0
self .model_params = (
np.linalg.inv(X_train_.T @ X_train_ + self.ridge_penalty * I)
@ X_train_.T @ y_train_

lmb_range = np.linspace(l, 100, 20)
model_params = np.zeros((len(lmb_range), len(column_names)-1))
rmse_test = np.zeros((len(lmb_range)))
for i, 1lmb in enumerate(lmb_range):
rr = RidgeRegression(ridge_penalty=1mb)
rr.fit(X_train, y_train)
rmse_test[i] = rr.rmse(X_test, y_test)
model_params[i] = rr.model_params[1:]
fig, ax = plt.subplots(2, 1, sharex=True)
for col in range(len(column_names)-1):
ax[0] .plot(1lmb_range, model_params.T[col], "o-", label=f"{column_names[col]l}")
best_rr_params = model_params[rmse_test.argmin()]
ax[0] .axvline(lmb_range[rmse_test.argmin()], linestyle="--", c="r")
ax[0] .1legend)
ax[0] .grid)
ax[0] .set_ylabel("coeff")
ax[1] .plot(lmb_range, rmse_test)
ax[1] .axvline(1mb_range[rmse_test.argmin()], linestyle="--", c="r"
ax[1] .set_ylabel("test RMSE")
ax[1] .set_xlabel("lambda")
ax[1].gridQ;

Icavol
Iweight
age
Ibph
SVi

Icp .
gleason

coeff

SEXERE

test RMSE
o o
(o)} ~
[00] o

0.66 -

0 20 40 60 80 100
lambda

(f)

@dataclass
class LassoRegression(OrdinaryLeastSquares):
lasso_penalty: float

def fit(self, X_train_: np.ndarray, y_train_: np.ndarray, num_iter: int = 1000) -> None:
def soft_thresholding(x_: float, penalty: float) -> float:
return np.sign(x_) * max(abs(x_) - penalty, 0)

n, m = X_train_.shape
w = np.zeros(m)
for _ in range(num_iter):
for j in range(m):
residual = y_train_ - (X_train_ @ w - X_train_[:, jl * w[jl)
rho = X_train_[:, j].dot(residual)
norm = np.linalg.norm(X_train_[:, j]) *x* 2

wljl = (
soft_thresholding(rho / norm, self.lasso_penalty / norm)
if j !'= 0 else rho / norm

)

self .model_params = w

lmb_range = np.logspace(-1, 2, 20, base=10)
model_params = np.zeros((len(lmb_range), len(column_names)-1))
rmse_test = np.zeros((len(lmb_range)))
for i, 1lmb in enumerate(lmb_range) :
lasso = LassoRegression(lasso_penalty=1mb)
lasso.fit(X_train, y_train)
rmse_test[i] = lasso.rmse(X_test, y_test)

model_params[i] = lasso.model_params[1:]
fig, ax = plt.subplots(2, 1, sharex=True)
for col in range(len(column_names)-1):
ax[0] .plot(lmb_range, model_params.T[col], "o-", label=f"{column_names[col]}")
best_lasso_params = model_params[rmse_test.argmin()]
ax[0] .axvline(1mb_range[rmse_test.argmin()], linestyle="--", c="r")
ax[0] .1legend ()
ax[0] .grid O
ax[0] .set_ylabel("coeff")
ax[1] .plot(1lmb_range, rmse_test)
ax[1] .axvline(1lmb_range[rmse_test.argmin()], linestyle="--", c="r")
ax[1] .set_ylabel("test RMSE")
ax[1] .set_xlabel("lambda")
ax[1] .set_xscale("log")
ax[1].grid();

—&— |Icavol
- 0.51 —e— Iweight
9 —8— age
© —— |bph
0.0 A .
—0— sv
L —@— Icp
—@— gleason
[
1
u 1.0 A :
= 1
ad 1
2 1
)] 0.8 1 I
+ 1
1
1071 100 10! 102
lambda

(2)

df _params = pd.DataFrame(
data=np.array([ols.model_params[1:], best_rr_params, best_lasso_params]).T,
columns=["0OLS", "Ridge", "LASSO0"],

)

df _params["param"] = column_names[:-1]

df _params = df_params.set_index("param")

df _params

OLS Ridge LASSO
param

lcavol ~ 0.752719 0.491252 0.661498

OLS Ridge LASSO
param
lweight 0.243582 0.210797 0.202488
age -0.192019 -0.081104 -0.068675
lbph 0.114299 0.079937 0.078088
svi 0.358539 0.262819 0.263272
lep -0.239179 0.002996 -0.009506
gleason 0.066347 0.051870 0.000000
pged5 0.131860 0.071212 0.018324

All RMSEs are close. Ridge and LASSO provide some significantly smaller coefficients. LASSO overall removes
the gleason parameter entirely.

lasso = LassoRegression(lasso_penalty=rmse_test.argmin())
lasso.fit(X_train, y_train)

y_pred = lasso.predict(X_test)

plt.title("Parity plot for best Lasso model")
plt.scatter(y_pred, y_test)
plt.xlabel(r"y_model")
plt.ylabel(r"y_ref")

plt.grid();

Parity plot for best Lasso model

®
4 e
[
[[®
37 ® ¢« o ¢
®
“a e & ¢
S 2 e e
> 2 ‘. °
o [1‘
1 - e
Q
0 -
[
1.0 1.5 2.0 2.5 3.0 3.5 4.0
Ymodel

10

	Partial derivative of the residual sum of squares (2 points)
	Solution

	Lasso regression (2 points)
	Solution

	Prostate cancer (6 points)
	Solution

