
Computational Statistics and Data Analysis (MVComp2)
Solutions to exercise 9

Lecturer Tristan Bereau Semester Wi23/24
Due Jan. 11, 2024, 23:59

1 Forward- and reverse-mode differentiation (2 points)

We explore the computation of derivatives on general acyclic computational graphs. Consider the function

𝑦 = exp [exp(𝑥) + exp(𝑥)2] + sin [exp(𝑥) + exp(𝑥)2]

whose computational graph is depicted in the figure, together with the intermediate functions 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5.

(a) Compute the derivative 𝜕𝑦/𝜕𝑥 by forward-mode differentiation. In other words, compute in order
𝜕𝑓1
𝜕𝑥

, 𝜕𝑓2
𝜕𝑥

, 𝜕𝑓3
𝜕𝑥

, 𝜕𝑓4
𝜕𝑥

, 𝜕𝑓5
𝜕𝑥

, and 𝜕𝑦
𝜕𝑥

,

using the chain-rule in each case to make use of the derivatives already computed.

(b) Compute the derivative 𝜕𝑦/𝜕𝑥 by reverse-mode differentiation. In other words, compute in order
𝜕𝑦
𝜕𝑓5

, 𝜕𝑦
𝜕𝑓4

, 𝜕𝑦
𝜕𝑓3

, 𝜕𝑦
𝜕𝑓2

, 𝜕𝑦
𝜕𝑓1

, and 𝜕𝑦
𝜕𝑥

,

using the chain-rule in each case to make use of the derivatives already computed.

1.1 Solution

We first express the intermediate functions
𝑓1 = exp(𝑥)
𝑓2 = 𝑓2

1

𝑓3 = 𝑓1 + 𝑓2

𝑓4 = exp(𝑓3)
𝑓5 = sin(𝑓3)
𝑦 = 𝑓4 + 𝑓5

1

(a) The forward-mode derivatives yield

𝜕𝑓1
𝜕𝑥

= exp(𝑥)

𝜕𝑓2
𝜕𝑥

= 𝜕𝑓2
𝜕𝑓1

𝜕𝑓1
𝜕𝑥

= 2 exp(2𝑥)

𝜕𝑓3
𝜕𝑥

= 𝜕𝑓3
𝜕𝑓2

𝜕𝑓2
𝜕𝑥

+ 𝜕𝑓3
𝜕𝑓1

𝜕𝑓1
𝜕𝑥

= 2 exp(2𝑥) + exp(𝑥)

𝜕𝑓4
𝜕𝑥

= 𝜕𝑓4
𝜕𝑓3

𝜕𝑓3
𝜕𝑥

= exp [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥))

𝜕𝑓5
𝜕𝑥

= 𝜕𝑓5
𝜕𝑓3

𝜕𝑓3
𝜕𝑥

= cos [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥))

𝜕𝑦
𝜕𝑥

= 𝜕𝑦
𝜕𝑓4

𝜕𝑓4
𝜕𝑥

+ 𝜕𝑦
𝜕𝑓5

𝜕𝑓5
𝜕𝑥

= exp [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥)) + cos [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥))
= {exp [exp(𝑥) + exp(2𝑥)] + cos [exp(𝑥) + exp(2𝑥)]} (2 exp(2𝑥) + exp(𝑥))

(b) The reverse-mode derivatives yield

𝜕𝑦
𝜕𝑓5

= 1

𝜕𝑦
𝜕𝑓4

= 1

𝜕𝑦
𝜕𝑓3

= 𝜕𝑦
𝜕𝑓4

𝜕𝑓4
𝜕𝑓3

+ 𝜕𝑦
𝜕𝑓5

𝜕𝑓5
𝜕𝑓3

= exp(𝑓3) + cos(𝑓3)

𝜕𝑦
𝜕𝑓2

= 𝜕𝑦
𝜕𝑓3

𝜕𝑓3
𝜕𝑓2

= exp(𝑓1 + 𝑓2) + cos(𝑓1 + 𝑓2)

𝜕𝑦
𝜕𝑓1

= 𝜕𝑦
𝜕𝑓2

𝜕𝑓2
𝜕𝑓1

+ 𝜕𝑦
𝜕𝑓3

𝜕𝑓3
𝜕𝑓1

= [exp(𝑓1 + 𝑓2) + cos(𝑓1 + 𝑓2)] (2𝑓1 + 1)

𝜕𝑦
𝜕𝑥

= 𝜕𝑦
𝜕𝑓1

𝜕𝑓1
𝜕𝑥

= [exp(𝑓1 + 𝑓2) + cos(𝑓1 + 𝑓2)] (2𝑓1 + 1) exp(𝑥)
= exp [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥)) + cos [exp(𝑥) + exp(2𝑥)] (2 exp(2𝑥) + exp(𝑥))
= {exp [exp(𝑥) + exp(2𝑥)] + cos [exp(𝑥) + exp(2𝑥)]} (2 exp(2𝑥) + exp(𝑥))

2 Second moment of ReLU (2 points)

Consider the continuous random variable 𝑋 with symmetrical distribution around the mean 𝐸[𝑋] = 0 and
variance Var[𝑋] = 𝜎2. e pass this variable through the ReLU function to obtain the transformed variable, 𝐵,
such that

𝐵(𝑥) = ReLU[𝑥] = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

.

Prove that the second moment around the origin of the transformed variable is 𝐸[𝐵2] = 𝜎2/2.

2

2.1 Solution

Because of the definition of the ReLU function we only consider the positive half of 𝑋 when calculating 𝐸[𝐵2]

𝐸[𝐵2] = ∫
∞

0
d𝑥 𝑥2 ReLU(𝑥).

Since the distribution of 𝑋 is symmetric around 0 and Var[𝑋] = 𝜎2, the total variance is equally distributed
over the positive and negative halves of the distribution.

Further, recall the expression for the variance

Var[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2.

Given 𝐸[𝑋] = 0, the variance simplifies to
Var[𝑋] = 𝐸[𝑋2].

Because of the symmetry of the distribution and that 𝐵 only represents the positive part of the distribution of
𝑋, the second moment of 𝑏 is half of Var[𝑋]. Therefore,

𝐸[𝐵2] = 𝜎2

2
.

3 Heteroskedastic regression (6 points)

Please download the following dataset: x_y.csv. It contains 1,000 datapoints with 1-dimensional inputs, 𝑥𝑥𝑥, and
1-dimensional outputs, 𝑦, as shown in the following figure

(0) Download the dataset, and randomly split it into a training and a test set with ratio (66/33%).

(a) We model the distribution of outputs as

𝑝(𝑦|𝑥𝑥𝑥,𝜃𝜃𝜃) = 𝒩(𝑦|𝑓𝜇(𝑥𝑥𝑥), 𝜎2),

where 𝑓𝜇(𝑥𝑥𝑥) will be a multilayer perceptron (MLP), and we assume that all measurement errors are
identical (i.e., homoskedastic regression), 𝜎(𝑥𝑥𝑥) = 𝜎. Explain why the mean-squared error is a reasonable
log-likelihood function.

3

data_09_x_y.csv

(b) Build an MLP with the following architecture: 3 fully-connected linear layers with hidden dimensions 32
and 64 (i.e., the dimensionality of your network should yield 1 → 32 → 64 → 1). Connect them with the
ReLU activation function. Optimize the log-likelihood on the training set. Feel free to use any optimizer
(e.g., stochastic gradient descent or Adam). Plot the resulting model on the test set together with the
reference datapoints. Are you underfitting, overfitting?

(c) One standard way to address the prediction of heteroskedastic data for regression is to predict both the
mean and the variance of a Normal distribution: 𝑓𝜇(𝑥𝑥𝑥) = 𝐸[𝑦|𝑥𝑥𝑥,𝜃𝜃𝜃] and 𝑓𝜎2(𝑥𝑥𝑥) = Var[𝑦|𝑥𝑥𝑥,𝜃𝜃𝜃]. Derive a
log-likelihood function for this heteroskedastic problem.

(d) Modify the MLP to output two values: the mean and the variance. Optimize the model. Plot the mean
and variance predicted by your model on the test set together with the reference datapoints. Are you
underfitting, overfitting?

Hint: In case you use PyTorch, you may find the following functions useful to reshape tensors and arrays:
numpy.reshape and torch.squeeze.

3.1 Solutions

(0) Read the csv file and split into training and test sets

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

df = pd.read_csv("data_09_x_y.csv")
x = df["x"].to_numpy().reshape(-1, 1)
y = df["y"].to_numpy()

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
X_train = torch.tensor(X_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32)
X_train.shape, X_test.shape, y_train.shape

(torch.Size([670, 1]), torch.Size([330, 1]), torch.Size([670]))

(a) For a homoskedastic model, the Normal distribution has a variance that does not depend on the input.
Thus the log likelihood reduces to the mean-squared error, as seen in the lecture.

(b) Define the model

class SimpleNN(nn.Module):
def __init__(self):

super(SimpleNN, self).__init__()

4

self.fc1 = nn.Linear(1, 32) # First layer
self.fc2 = nn.Linear(32, 64) # Second layer
self.fc3 = nn.Linear(64, 1)
self.relu = nn.ReLU() # Define ReLU here

def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return self.fc3(x).squeeze()

And run the optimization using Adam on 10,000 epochs

model = SimpleNN()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)

num_epochs = 20000
train_curve = []
val_curve = []
for epoch in range(num_epochs):

Training
model.train()
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, y_train)
loss.backward()
train_loss = loss.item()
optimizer.step()

Validation
model.eval()
with torch.no_grad(): # Disable gradient computation

outputs = model(X_test)
val_loss = criterion(outputs, y_test)

if (epoch + 1) % 2000 == 0:
train_curve.append(train_loss)
val_curve.append(val_loss)
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')

Epoch [2000/20000], Loss: 0.6639, Val Loss: 0.6671
Epoch [4000/20000], Loss: 0.6634, Val Loss: 0.6661
Epoch [6000/20000], Loss: 0.6637, Val Loss: 0.6739
Epoch [8000/20000], Loss: 0.6634, Val Loss: 0.6732
Epoch [10000/20000], Loss: 0.6619, Val Loss: 0.6688
Epoch [12000/20000], Loss: 0.6611, Val Loss: 0.6748
Epoch [14000/20000], Loss: 0.6612, Val Loss: 0.6673
Epoch [16000/20000], Loss: 0.6766, Val Loss: 0.6957
Epoch [18000/20000], Loss: 0.4244, Val Loss: 0.4301
Epoch [20000/20000], Loss: 0.4238, Val Loss: 0.4368

5

Finally we plot the model and the reference labels on the test set

model.eval() # Set the model to evaluation mode
with torch.no_grad(): # Disable gradient computation

outputs = model(X_test)
plt.scatter(X_test, outputs, label="model")
plt.scatter(X_test, y_test, label="reference", alpha=0.5)
plt.legend()
plt.xlabel(r"x")
plt.ylabel(r"y")
plt.grid()

20 10 0 10 20 30 40 50 60
x

2

0

2

4

6

y

model
reference

Clearly we are underfitting, because the model does not reproduce the scatter of the points.

(c) Consider the heteroskedastic problem. The likelihood yields

ℒ(𝑥𝑥𝑥|𝜃𝜃𝜃) =
𝑁

∏
𝑖=1

1
√2𝜋𝑓𝜎2(𝑥𝑥𝑥)

exp [−1
2

(𝑦 − 𝑓𝜇(𝑥𝑥𝑥)2)
𝑓𝜎2(𝑥𝑥𝑥)

]

− log ℒ(𝑥𝑥𝑥|𝜃𝜃𝜃) =
𝑁

∑
𝑖=1

1
2

log 𝑓𝜎2(𝑥𝑥𝑥) +
(𝑦 − 𝑓𝜇(𝑥𝑥𝑥))2

2𝑓𝜎2(𝑥𝑥𝑥)

(d) Modify the neural network and define the new loss function

class TwoHeadNN(nn.Module):
def __init__(self):

super(TwoHeadNN, self).__init__()
self.fc1 = nn.Linear(1, 32)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(32, 64)

6

self.fc3 = nn.Linear(64, 2)

def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
output = self.fc3(x)
mean = output[:, 0]
variance = torch.exp(output[:, 1]) # Ensuring variance is non-negative
return mean, variance

model = TwoHeadNN()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
def custom_loss(mean, variance, y):

return torch.mean(0.5 * torch.log(variance) + 0.5 * ((y - mean) ** 2) / variance)

And optimize

num_epochs = 20000
train_curve = []
val_curve = []
for epoch in range(num_epochs):

model.train()
optimizer.zero_grad()
mean, variance = model(X_train)
loss = custom_loss(mean, variance, y_train)
loss.backward()
train_loss = loss.item()
optimizer.step()

Validation
model.eval() # Set the model to evaluation mode
with torch.no_grad(): # Disable gradient computation

mean, variance = model(X_test)
val_loss = custom_loss(mean, variance, y_test)

if (epoch + 1) % 2000 == 0:
train_curve.append(train_loss)
val_curve.append(val_loss)
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')

model.eval() # Set the model to evaluation mode
with torch.no_grad(): # Disable gradient computation

mean, variance = model(X_test)
plt.errorbar(X_test, mean, yerr=np.sqrt(variance), fmt=".", alpha=0.5, label="model")
plt.scatter(X_test, y_test, c="orange", label="reference")
plt.legend()
plt.xlabel(r"x")
plt.ylabel(r"y")
plt.grid()

7

Epoch [2000/20000], Loss: -0.0588, Val Loss: 0.0493
Epoch [4000/20000], Loss: -0.0673, Val Loss: 0.0957
Epoch [6000/20000], Loss: -0.0764, Val Loss: 0.1258
Epoch [8000/20000], Loss: -0.0866, Val Loss: 0.1600
Epoch [10000/20000], Loss: -0.1212, Val Loss: 0.1966
Epoch [12000/20000], Loss: -0.2352, Val Loss: 0.1440
Epoch [14000/20000], Loss: -0.2439, Val Loss: 0.3048
Epoch [16000/20000], Loss: -0.2477, Val Loss: 0.6413
Epoch [18000/20000], Loss: -0.2577, Val Loss: 1.4307
Epoch [20000/20000], Loss: -0.2595, Val Loss: 2.7039

20 10 0 10 20 30 40 50 60
x

2

0

2

4

6

y

reference
model

Compared to the original neural network, we are underfitting much less, thanks to the spatial modeling of the
variance.

8

	Forward- and reverse-mode differentiation (2 points)
	Solution

	Second moment of ReLU (2 points)
	Solution

	Heteroskedastic regression (6 points)
	Solutions

