Computational Statistics and Data Analysis (MVComp2)

Solutions to exercise 11

Lecturer Tristan Bereau Semester Wi23/24
Due Jan. 25, 2024, 23:59

1 Defective parts in a shipment (5 points)

A shipment of parts is received, out of which five are tested for defects. The number of defects, X, follows a
binomial distribution, X ~ Binomial(n = 5,p = ). The history of past shipments indicates that 6 follows a
prior distribution, Beta(1,9). The test reveals X = 0. We wish to establish whether there is significant evidence
that the proportion of defective parts in the whole shipment exceeds 10%.

(a) Derive an expression for the posterior probability distribution, p(6]X).

(b) Compare the posterior probabilities of the two models:

M;:0<0.1
My :0>0.1

Feel free to evaluate your calculations using statistical libraries. From your results, can you conclude
whether the proportion of defective parts in the whole shipment likely exceeds 10%?

1.1 Solution

(a) The problem follows what we covered in Homework 3 Problem 3: the beta distribution is a conjugate prior
to the binomial. The resulting posterior yields

p(0|X = k) = p(X = k[0)p(0)
o 08 (1 — 9)yNkga—1(1 — 9)p-1
— 9a+k71(1 o 9)B+ka71

= Beta(a+ k, 5+ N — k).
Plugging in the values of N =5, k=0, a =1, and § =9, we get

p(8]X = 0) = Beta(1, 14).



(b) The two models can be written using the posterior

0.1
p(0|X =0,M,) = / df Beta(1,14)
0

1
p(6]X =0, M,) :/ d6 Beta(1, 14)
0.1

We use scipy to compute the integral via the cumulative distribution functions

from scipy.stats import beta

p_ml = beta(l,14).cdf(0.1)
p.m2 = 1. - p_ml
print (£"Prob(M1): {p_mi:.2f},\nProb(M2): {p_m2:.2f}")

Prob(M1): 0.77,
Prob(M2): 0.23

which is very much in favor of model M;. From this we conclude that there is likely no more than 10% defective
parts in the whole shipment.

2 BIC for customer data (5 points)

Download the following dataset about the number of customers entering a store given the hour of the day:
customers.csv. The are two features:

Variable Description

hour hour of the day
customers number of customers in the store

We will consider three models for the number of customers as a function of the number of hours:

1. constant model (i.e., intercept, 6((]0))
2. linear model (i.e., intercept 5(()1> and slope 651))
3. quadratic model (i.e., intercept 582), slope Bgm, and quadratic term 69)

We want to determine which one of the three regression models performs best.

(a) Via a routine such as numpy.polyfit, fit the three models. Report the coefficients and plot the fits against
the data.

(b) Under the assumption that the model errors follow a normal distribution, N (0, 0?), derive an expression
for the likelihood term of the BIC, using a maximum-likelihood estimate for the parameter, 62. Use it to
construct a simple expression for the BIC.

(c) Calculate the Bayesian Information Criterion (BIC) for the three models. Which one performs best
according to that metric?
Hint: When dealing with a regression model with & degrees of freedom, the residual variance 52 = ﬁ E?:l (¥, —
;)% is an unbiased estimator.


data_11_customers.csv

2.1 Solution
(a) We solve for the fitting parameters of the three models

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data_11_customers.csv")
fO0 = np.polyfit(df["hour"], df["customers"], 0)[0]
f1_0, f1_1 = np.polyfit(df["hour"], df["customers"], 1)

£2_0, £f2_1, £f2_2 = np.polyfit(df["hour"], df["customers"], 2)

print (f"model O:
print (f"model 1:

£0={£0:.2f}")
£f1_0={f1_0:.2f}, f1 1={f1 1:.2f}")

print (f"model 2: £2_0={f2_0:.2f}, £2_1={f2_1:.2f}, £2_2={f2_2:.2f}")

x = np.linspace(8, 17)

plt.scatter(df ["hour"], df["customers"])

plt.plot(x, Oxx + fO, label="model 0")

plt.plot(x, f1_O0*x + f1_1, ":", label="model 1")

plt.plot(x, £2_O*x**2 + f2_1%x + f2_2, "--", label="model 2")
plt.xlabel("hours")

plt.ylabel("customers")

plt.legend ()

plt.show()

model 0O: f0=43.80
model 1: f1_0=3.19, f1_1=3.95
model 2: f2_0=-0.15, f2_1=6.98, f2 2=-18.47
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(b) The BIC is defined as

Lpic(m) = —2logp(D|0, m) + klogn
1 1 & )

where f(z;) is the model prediction for the i-th datapoint and y, is its reference value. Using the residual
variance as unbiased estimator of o2, we obtain

- IS
Lpic(m) = nlog(2r) +nlog(6?) + =5 > _(f(x;) —,)* + klogn.
i—1
Clearly the first term will be identical across all three models, and so will not contribute in differentiating
them.
(c) We compute the BIC for the three models
# Model predictions
df ["model_0"] = 0 * df["hour"] + £fO

df ["model 1"] f1 0 * df ["hour"] + f1 1
df ["model _2"] £2_0*df ["hour"]**2 + f2_1*df ["hour"] + f2_2

def compute_bic(predictions: pd.Series, ref_values: pd.Series, num_dof: int) -> float:
assert len(predictions) == len(ref_values)
num_data = len(ref values)
rss = ((predictions - ref_values)**2).sum()
sig = np.sqrt(rss / (num_data - num_dof))
loglik = (
- num_data / 2 * np.log(2 * np.pi)
- num_data / 2 * np.log(sig**2)
-1/ (2 % sig**2) * rss
)

return -2 * loglik + num_dof * np.log(num_data)

bic_0 = compute_bic(df["model_0"], df["customers"], 1)
bic_1 = compute_bic(df["model_1"], df["customers"], 2)
bic_2 = compute_bic(df["model_2"], df["customers"], 3)

print (£"BIC_0: {bic_0:.2f}, BIC_1: {bic_1:.2f}, BIC_2: {bic_2:.2f}")

BIC_0: 76.66, BIC_1: 60.24, BIC_2: 62.03

From which we conclude that the linear model has the lowest BIC, and intuitively seems to be the best

compromise.
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