
Computational Statistics and Data Analysis (MVComp2)
Solutions to exercise 11

Lecturer Tristan Bereau Semester Wi23/24
Due Jan. 25, 2024, 23:59

1 Defective parts in a shipment (5 points)

A shipment of parts is received, out of which five are tested for defects. The number of defects, 𝑋, follows a
binomial distribution, 𝑋 ∼ Binomial(𝑛 = 5, 𝑝 = 𝜃). The history of past shipments indicates that 𝜃 follows a
prior distribution, Beta(1, 9). The test reveals 𝑋 = 0. We wish to establish whether there is significant evidence
that the proportion of defective parts in the whole shipment exceeds 10%.

(a) Derive an expression for the posterior probability distribution, 𝑝(𝜃|𝑋).

(b) Compare the posterior probabilities of the two models:

𝑀1 ∶ 𝜃 ≤ 0.1
𝑀2 ∶ 𝜃 > 0.1

Feel free to evaluate your calculations using statistical libraries. From your results, can you conclude
whether the proportion of defective parts in the whole shipment likely exceeds 10%?

1.1 Solution

(a) The problem follows what we covered in Homework 3 Problem 3: the beta distribution is a conjugate prior
to the binomial. The resulting posterior yields

𝑝(𝜃|𝑋 = 𝑘) = 𝑝(𝑋 = 𝑘|𝜃)𝑝(𝜃)
∝ 𝜃𝑘(1 − 𝜃)𝑁−𝑘𝜃𝛼−1(1 − 𝜃)𝛽−1

= 𝜃𝛼+𝑘−1(1 − 𝜃)𝛽+𝑁−𝑘−1

= Beta(𝛼 + 𝑘, 𝛽 + 𝑁 − 𝑘).

Plugging in the values of 𝑁 = 5, 𝑘 = 0, 𝛼 = 1, and 𝛽 = 9, we get

𝑝(𝜃|𝑋 = 0) = Beta(1, 14).
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(b) The two models can be written using the posterior

𝑝(𝜃|𝑋 = 0, 𝑀1) = ∫
0.1

0
d𝜃 Beta(1, 14)

𝑝(𝜃|𝑋 = 0, 𝑀2) = ∫
1

0.1
d𝜃 Beta(1, 14)

We use scipy to compute the integral via the cumulative distribution functions

from scipy.stats import beta

p_m1 = beta(1,14).cdf(0.1)
p_m2 = 1. - p_m1
print(f"Prob(M1): {p_m1:.2f},\nProb(M2): {p_m2:.2f}")

Prob(M1): 0.77,
Prob(M2): 0.23

which is very much in favor of model 𝑀1. From this we conclude that there is likely no more than 10% defective
parts in the whole shipment.

2 BIC for customer data (5 points)

Download the following dataset about the number of customers entering a store given the hour of the day:
customers.csv. The are two features:

Variable Description

hour hour of the day
customers number of customers in the store

We will consider three models for the number of customers as a function of the number of hours:

1. constant model (i.e., intercept, 𝛽(0)
0 )

2. linear model (i.e., intercept 𝛽(1)
0 and slope 𝛽(1)

1 )
3. quadratic model (i.e., intercept 𝛽(2)

0 , slope 𝛽(2)
1 , and quadratic term 𝛽(2)

2 )

We want to determine which one of the three regression models performs best.

(a) Via a routine such as numpy.polyfit, fit the three models. Report the coefficients and plot the fits against
the data.

(b) Under the assumption that the model errors follow a normal distribution, 𝒩(0, 𝜎2), derive an expression
for the likelihood term of the BIC, using a maximum-likelihood estimate for the parameter, �̂�2. Use it to
construct a simple expression for the BIC.

(c) Calculate the Bayesian Information Criterion (BIC) for the three models. Which one performs best
according to that metric?

Hint: When dealing with a regression model with 𝑘 degrees of freedom, the residual variance �̂�2 = 1
𝑛−𝑘 ∑𝑛

𝑖=1(𝑦𝑖 −
̂𝑦𝑖)2 is an unbiased estimator.
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2.1 Solution

(a) We solve for the fitting parameters of the three models

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("data_11_customers.csv")
f0 = np.polyfit(df["hour"], df["customers"], 0)[0]
f1_0, f1_1 = np.polyfit(df["hour"], df["customers"], 1)
f2_0, f2_1, f2_2 = np.polyfit(df["hour"], df["customers"], 2)
print(f"model 0: f0={f0:.2f}")
print(f"model 1: f1_0={f1_0:.2f}, f1_1={f1_1:.2f}")
print(f"model 2: f2_0={f2_0:.2f}, f2_1={f2_1:.2f}, f2_2={f2_2:.2f}")

x = np.linspace(8, 17)
plt.scatter(df["hour"], df["customers"])
plt.plot(x, 0*x + f0, label="model 0")
plt.plot(x, f1_0*x + f1_1, ":", label="model 1")
plt.plot(x, f2_0*x**2 + f2_1*x + f2_2, "--", label="model 2")
plt.xlabel("hours")
plt.ylabel("customers")
plt.legend()
plt.show()

model 0: f0=43.80
model 1: f1_0=3.19, f1_1=3.95
model 2: f2_0=-0.15, f2_1=6.98, f2_2=-18.47
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(b) The BIC is defined as

ℒBIC(𝑚) = −2 log 𝑝(𝒟|𝜃𝜃𝜃, 𝑚) + 𝑘 log 𝑛

= −2 log [ 1
(2𝜋𝜎2)𝑛/2 exp (− 1

2𝜎2

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖) − 𝑦𝑖)2)] + 𝑘 log 𝑛

where 𝑓(𝑥𝑖) is the model prediction for the 𝑖-th datapoint and 𝑦𝑖 is its reference value. Using the residual
variance as unbiased estimator of 𝜎2, we obtain

ℒBIC(𝑚) = 𝑛 log(2𝜋) + 𝑛 log(�̂�2) + 1
�̂�2

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖) − 𝑦𝑖)2 + 𝑘 log 𝑛.

Clearly the first term will be identical across all three models, and so will not contribute in differentiating
them.

(c) We compute the BIC for the three models

# Model predictions
df["model_0"] = 0 * df["hour"] + f0
df["model_1"] = f1_0 * df["hour"] + f1_1
df["model_2"] = f2_0*df["hour"]**2 + f2_1*df["hour"] + f2_2

def compute_bic(predictions: pd.Series, ref_values: pd.Series, num_dof: int) -> float:
assert len(predictions) == len(ref_values)
num_data = len(ref_values)
rss = ((predictions - ref_values)**2).sum()
sig = np.sqrt(rss / (num_data - num_dof))
loglik = (
- num_data / 2 * np.log(2 * np.pi)
- num_data / 2 * np.log(sig**2)
- 1 / (2 * sig**2) * rss

)
return -2 * loglik + num_dof * np.log(num_data)

bic_0 = compute_bic(df["model_0"], df["customers"], 1)
bic_1 = compute_bic(df["model_1"], df["customers"], 2)
bic_2 = compute_bic(df["model_2"], df["customers"], 3)

print(f"BIC_0: {bic_0:.2f}, BIC_1: {bic_1:.2f}, BIC_2: {bic_2:.2f}")

BIC_0: 76.66, BIC_1: 60.24, BIC_2: 62.03

From which we conclude that the linear model has the lowest BIC, and intuitively seems to be the best
compromise.
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